Allied Paper, Inc./Portage Creek/ Kalamazoo River Superfund Site Kalamazoo, Michigan Final Technical Memorandum 14 Biota Investigation Appendix E Data Quality Review Reports Volume I January 2002 Technical Memorandum ### DATA REVIEW FOR ## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 39990 PCB ANALYSES TERRESTRIAL BIOTA - EARTHWORMS Analyses performed by: Aquatec, Inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York ### Introduction Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: ### Calibration The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for non-linearity at the low end of the calibration curve. #### <u>Identification</u> Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. #### **Data Assessment** ### 1. Holding Time There is no specified holding time for extraction of biota samples; however, all samples must be analyzed within 40 days of extraction. All samples were analyzed within the specified holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., method, field or rinse blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field and rinse blanks measure contamination of samples during field operations. No target compounds were detected in the method blanks or instrument blanks. ### 3. System Performance The system performance was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. #### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for both surrogates in samples K46000, K46006 and K46014. All data for these samples have been qualified as estimated. Samples K46004, K46005, K46007, K46008, K46009 and K46014MS had one surrogate recovery below acceptable control limits. No qualifiers were added to these samples based on surrogate performance. All other surrogate recoveries were within acceptable control limits. ### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. ### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries were within acceptable control limits. The relative percent differences (RPD) between matrix spike and matrix spike duplicate recoveries were above the acceptable control limits. No qualifiers were added to the samples based on this deviation. ### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ### 9. General Comments The recommended data usage for the sample reanalyses is as follows: ### K46010 and K46010-RE Sample K46010 was originally analyzed at a 1:10 dilution due to a laboratory accident during GPC cleanup procedure. The sample was subsequently re-extracted and reanalyzed undiluted. Data from the reanalysis K46010-RE should be used for all compounds. ## DATA REVIEW CHECKLIST ### PCB Data Review Checklist | | YES | NO | NA | |--|-----------|----------|----| | Data Completeness and Deliverables | | | | | is there a narrative or cover letter present? | <u>X</u> | | | | Are the samples numbers included in the narrative? | <u> x</u> | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | <u>x</u> | • | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | <u>X</u> | | | | Are the outliers correctly marked with an asterisk? | <u> </u> | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | <u>x</u> | | | | If yes, were the samples reanalyzed? | | X | | | Matrix Spikes | | - | | | Is there a matrix spike recovery form present? | <u> </u> | | | |
Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | • | | | <u>0</u> out of <u>4</u> | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | • | | | | Blanks | | | | | Is a Method Blank Summary Form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ## PCB Data Review Checklist - Page 2 | | YES | NO | NA | |---|----------|----|----------| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | x | | | Do any field/rinse blanks have positive results? | | | x | | Are there field/rinse/equipment blanks associated with every sample? | x | | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | X | | | | Aroclor 1221 | x | | | | Aroclor 1232 | X | | | | Aroclor 1242 | X | | | | Aroclor 1248 | X | | | | Aroclor 1254 | <u>x</u> | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | × | | <u> </u> | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | X | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | x | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed? | × x | | | | Are %D values for all compounds within limits (less than 15%)? | × | | | | Analytical Sequence Check | | | | | Is a analytical sequence form present and complete for each column and each period of analyses? | X | | <u> </u> | | Was the proper analytical sequence followed? | X | | | | | | | | ### PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|----------|----|----| | Cleanup Efficiency Verification | | | - | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | X | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | x | | | | PCB Identification | | | | | Is both a combined and single column Aroclor Identification Report present for every sample? | <u>x</u> | | | | Do the combined column and individual column Aroclor identifications agree? | X | | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | X | | Compound Quantitation and Reported Detection Lie | mits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | X | | | | Chromatogram Quality | | | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | X | | ## PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding | Surrogates | - Column 1 | Surrogates | Column 2 | |-----------|------------|---------------|------------|---------------|---------------| | | Time | TCX | DCB | TCX | DCB | | K46000 | OK for all | ↓ (35) | ↓ (47) | † (33) | ↓ (45) | | K46001 | . samples | | | | | | K46002 | | | | | | | K48003 | | | | | | | K46004 | | Į (51) | | ↓ (50) | | | K46005 | | J (51) | | ↓ (50) | | | K46006 | | ↓ (20) | ↓ (20) | ļ (29) | ↓ (28) | | .K46007 | | ↓ (52) | | ↓ (51) | | | K46008 | | | | ↓ (58) | | | K46009 | | ↓ (57) | | Į (54) | | | K46010 | | | | | | | K46010RE | | | | _ | | | K46011 | | | | | | | K46012 | | | | | | | K46013 | | | | | | | K46014 | | ↓ (17) | ↓ (17) | ↓ (26) | † (26) | | K46014MS | | ↓ (52) | | ↓ (51) | | | K46014MSD | , | Surrogate Standards TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl ### Qualifiers: - Surrogates diluted out Recovery high Recovery low D Unless otherwise noted, all parameters are within specified limits. ## PCB Calibration Summary Instrument: <u>HP2087</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 2/15/94 1833 | 2/18 | 2/18 | 2/19 | 2/19 | 2/19 | 2/19 | |----------------------|--------------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time; | la
2/16/94 1453 | 1645 | 1721 | 0032 | 0108 | 0818 | 0854 | | • | Initial Cal, | Cont.
Cal. | Cost.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | - %0 | 50 | % D | Q | %D | %D | | Aroclor 1016 | 4.7 / 4.5 | | | | 10.5 | | | | Aroclor 1221 | 4.5 / 3.2 | | | | | | | | Arocior 1232 | 4.6 / 3.3 | | | | | | | | Arocior 1242 | 5.4 / 3.8 | | | | | | 6.0 | | Aroclor 1248 | 4.2 / 4.2 | 5.0 | | 5.0 | | 2.0 | | | Aroclor 1254 | 4.5 / 3.4 | | | | | | | | Aroclor 1260 | 3.7 / 3.4 | | 3.5 | | | | | | Tetrachioro-m-xylene | 10.1 / 7.1 | | | | | | | | Decachlorobiphenyl | 5.7 / 8.2 | . | | | | | | | Affected Samples: | | | | | | | | | | | | ,
: | | | | | | | | | <u> </u> | | | | | | | | | | | : | - | øs. | ## PCB Calibration Summary - Page 2 Instrument: <u>HP2087</u> Column: <u>RTX-35 / RTX-5</u> | Date: | | 2/19 | 2/19 | | | | | |----------------------|--------------|-------|------------|------------|------------|------------|----------| | Time; | | 1504 | 1840 | | | | | | | initial Cal. | Cont. | Gont. | Cont. | Cont. | Cont. | Cont. | | | %R\$D | Cat | Gel.
%D | Cal.
%O | Cal.
%D | Cal.
%D | Cal. | | Aroclor 1016 | | - | | | | | | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | · | | | | | | Aroclor 1242 | | | | | | | | | Aroclor 1248 | | 4.5 | | | | | | | Aroclor 1254 | | | 1.0 | | | | | | Aroclor 1260 | | | | | | | | | Tetrachioro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | · | | | | | | | | | | | ! | | | | | | | <u> </u> | | | | | | | | | | | <u></u> | | | | | | | | | | | | | <u> </u> | | | | | | ø. | | | <u> </u> | | | | | | | | | ļ | | | | | = | | | | ļ | | | | | | | | | ļ | | | | | | | | | | ### CORRECTED ANALYSIS SUMMARY FORMS EPA SAMPLE NO. K46000 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 Phase Type: **BIOTA** Lab Sample ID: 200345 Phase Weight: 10.1 **Date Received:** 10/09/93 **(g)** 1.0 **Date Extracted:** 02/01/94 Injection Volume: (uL) 1.0 Dilution Factor: 02/19/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | (mg/Kg) | <u>Q</u> | |---------|---| | 0.050 | n 1 | | 0.050 | UJ | | 0.050 | UJ | | 0.050 | 0.2 | | 0.050 | UJ | | 0.050 | ני ט | | 0.023 | J | | | 0.050
0.050
0.050
0.050
0.050 | Lab Code: Case: EPA SAMPLE NO. K46001 SDG: 39990 Phase Type: BIOTA Phase Weight: 10.0 (g) Injection Volume: 1.0 (uL) Dilution Factor: 1.0 Aquatec, Inc. 91082 Lab Name: _ Contract: Lab Sample ID: 200346 Date Received: 10/09/93 Date Extracted: 02/01/94 Date Analyzed: 02/19/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION | ^ | |------------|--------------|---------------|----------| | | | (mg/Kg) | <u>C</u> | | 12674-11-2 | Aroclor-1016 | 0.050 | Ų | | 11104-28-2 | Aroclor-1221 | 0.050 | Ų | | 11141-16-5 | Aroclor-1232 | 0.050 | 7 | | 53469-21-9 | Aroclor-1242 | 0.050 | _ | | 12672-29-6 | Aroclor-1248 | 0.050 | 7 | | 11097-69-1 | Aroclor-1254 | 0.050 | | | 11096-82-5 | Aroclor-1260 | 0.024 | | AQUAI BIO **EPA SAMPLE NO.** K46002 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 200347 Phase Type: **BIOTA** Lab Sample ID: 10/09/93 Phase Weight: 10.0 **(g) Date Received:** Injection Volume: 1.0 (uL) Date Extracted: 02/01/94 Dilution Factor: 1.0 Date Analyzed: 02/19/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.050 | U | | 11096-82-5 | Aroclor-1260 | 0.025 | J | EPA SAMPLE NO. K46003 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 **BIOTA** Lab Sample ID: 201526 Phase Type: 10.0 **Date Received:** 10/14/93 Phase Weight: **(g)** 02/01/94 1.0 (uL) **Date Extracted:** Injection Volume: Dilution Factor: 02/19/94 5.0 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 2.5 | | | 11097-69-1 | Aroclor-1254 | 0.25 | υ | | 11096-82-5 | Aroclor-1260 | 0.25 | U | **EPA SAMPLE NO.** K46004 Lab Code: **AQUAI** Lab Name: Aquatec, Inc. 39990 91082 Case: BIO SDG: Contract: **BIOTA** Phase Type: Lab Sample ID: 201527 Phase Weight: _ 10.0 **(g)** Date Received: 10/14/93 Injection Volume: 1.0 (uL) **Date Extracted:** 02/01/94 Dilution Factor: _ 2.0 Date Analyzed: 02/19/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------
-----------------------|-----| | 12674-11-2 | Aroclor-1016 | 0.10 | l | | 11104-28-2 | Aroclor-1221 | 0.10 | _ ι | | 11141-16-5 | Aroclor-1232 | 0.10 | | | 53469-21-9 | Aroclor-1242 | 0.10 | | | 12672-29-6 | Aroclor-1248 | 1.4 | | | 11097-69-1 | Aroclor-1254 | 0.73 | | | 11096-82-5 | Aroclor-1260 | 0.10 | · | Lab Name: Aquatec, Inc. 91082 **BIOTA** 10.0 1.0 5.0 Contract: Phase Type: Phase Weight: Dilution Factor: Injection Volume: EPA SAMPLE NO. K46005 Lab Code: **AQUAI** Case: BIO SDG: 39990 Lab Sample ID: 201528 (0) **Date Received:** 10/14/93 (uL) **Date Extracted:** 02/01/94 Date Analyzed: Sulfur Clean-up: 02/19/94 N (Y/N) | (mg/Kg) | 1
0 | |----------|---| | 0.25 | U | | 221 0.25 | U | | 232 0.25 | U | | 242 0.25 | U | | 248 2.0 | | | 254 1.2 | | | 260 0.25 | U | | | 016 0.25 221 0.25 232 0.25 242 0.25 248 2.0 254 1.2 | EPA SAMPLE NO. K46006 Lab Name: Aquatec, Inc. Lab Code: **IAUDA** Contract: 91082 Case: BIO SDG: 39990 Phase Type: **BIOTA** Lab Sample ID: 201529 Phase Weight: 6.7 Date Received: 10/14/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 02/01/94 Dilution Factor: ____ Date Analyzed: 02/19/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|----| | 12674-11-2 | Aroclor-1016 | 0.075 | U- | | 11104-28-2 | Aroclor-1221 | 0.075 | υŢ | | 11141-16-5 | Aroclor-1232 | 0.075 | U | | 53469-21-9 | Aroclor-1242 | 0.075 | UĘ | | 12672-29-6 | Aroclor-1248 | 0.92 | - | | 11097-69-1 | Aroclor-1254 | 0.39 | - | | 11096-82-5 | Aroclor-1260 | 0.075 | υį | EPA SAMPLE NO. K46007 Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 Contract: Case: _ BIO SDG: 39990 **BIOTA** 202392 Phase Type: Lab Sample ID: Phase Weight: 10/27/93 8.3 Date Received: **(g)** 1.0 Injection Volume: (uL) Date Extracted: 02/01/94 Dilution Factor: 2.0 Date Analyzed: 02/18/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ΟN
<u>Ω</u> | | |------------|--------------|-----------------------|----------------|--| | 12674-11-2 | Aroclor-1016 | 0.13 | υ | | | 11104-28-2 | Aroclor-1221 | 0.13 | U | | | 11141-16-5 | Aroclor-1232 | 0.13 | Ų | | | 53469-21-9 | Aroclor-1242 | 0.13 | U | | | 12672-29-6 | Aroclor-1248 | 1.8 | | | | 11097-69-1 | Aroclor-1254 | 0.41 | | | | 11096-82-5 | Aroclor-1260 | 0.13 | U | | **EPA SAMPLE NO.** K46008 Lab Code: AQUAI Lab Name: Aquatec, Inc. 39990 BIO 91082 Case: SDG: __ , Contract: _ Phase Type: Lab Sample ID: 202393 **BIOTA** Phase Weight: 5.0 **Date Received:** 10/27/93 **(g)** Injection Volume: (uL) 1.0 Date Extracted: 02/01/94 Dilution Factor: 1.0 02/18/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |-----------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 1.5 | | | 11097-69-1 | Aroclor-1254 | 0.69 | | | 11096-82-5 Aroclor-12 | Aroclor-1260 | 0.10 | U | EPA SAMPLE NO. K46009 Lab Code: **AQUAI** Lab Name: Aquatec, Inc. 91082 BIO 39990 Contract: Case: SDG: Lab Sample ID: 202394 Phase Type: **BIOTA** 10/27/93 Phase Weight: 10.0 **Date Received: (g)** Injection Volume: 1.0 (uL) Date Extracted: 02/01/94 1.0 Dilution Factor: Date Analyzed: 02/18/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | Ų | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.050 | Ü | | 11096-82-5 | Arocior-1260 | 0.050 | U | EPA SAMPLE NO. K46010 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 Phase Type: **BIOTA** Lab Sample ID: 202395 Phase Weight: 10.0 (0) Date Received: 10/27/93 Injection Volume: 1.0 (uL) **Date Extracted:** 02/01/94 Dilution Factor: _ 10.0 Date Analyzed: 02/18/94 Sulfur Clean-up: N (Y/N) > CAS NO. CONCENTRATION **COMPOUND** Q (mg/Kg) 12674-11-2 Aroclor-1016 0.50 U 11104-28-2 Aroclor-1221 0.50 U U 11141-16-5 Aroclor-1232 0.50 53469-21-9 Aroclor-1242 0.50 U 12672-29-6 Aroclor-1248 0.50 U 11097-69-1 0.50 U Arocior-1254 11096-82-5 Aroclor-1260 U 0.50 **EPA SAMPLE NO.** K460108É Lab Code: AQUAI Lab Name: Aquatec, Inc. SDG: BIO 39990 91082 Case: . Contract: Phase Type: **BIOTA** Lab Sample ID: 202395R1 10/27/93 Phase Weight: 8.5 (g) Date Received: 1.0 Injection Volume: (uL) Date Extracted: 02/03/94 1.0 02/19/94 Date Analyzed: Dilution Factor: Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |-------------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.059 | U | | 11104-28-2 | Aroclor-1221 | 0.059 | U | | 11141-16-5 | Aroclor-1232 | 0.059 | U | | 53469-21-9 | Aroclor-1242 | 0.059 | U | | 12672-29-6 | Aroclor-1248 | 0.059 | U | | 11097-69-1 | Aroclor-1254 | 0.059 | U | | 11096-82-5 Aroclor-1260 | | 0.059 | U | EPA SAMPLE NO. K46011 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 Phase Type: **BIOTA** Lab Sample ID: 202396 Phase Weight: Date Received: 10.0 **(g)** 10/27/93 Injection Volume: 1.0 (uL) Date Extracted: 02/01/94 Dilution Factor: 1.0 Date Analyzed: 02/18/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.050 | Ų | | 11096-82-5 | Aroclor-1260 | 0.050 | U | EPA SAMPLE NO. K46012 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 Contract: 91082 Case: BIO SDG: 39990 Phase Type: BIOTA Lab Sample ID: _ _ _ 202397 Phase Weight: 10.0 **Date Received: (g)** 10/27/93 Injection Volume: (uL) Date Extracted: 1.0 02/01/94 Dilution Factor: 1.0 Date Analyzed: 02/18/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|-----| | 12674-11-2 | Aroclor-1016 | 0.050 | _ U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.41 | | | 11097-69-1 | Aroclor-1254 | 0.25 | | | 11096-82-5 | Aroclor-1260 | 0.050 | U | **EPA SAMPLE NO.** K46013 Lab Name: Aquatec, Inc. Lab Code: **AQUAI** · Contract: 91082 Case: BIO SDG: 39990 Phase Type: **BIOTA** Lab Sample ID: 202398 Phase Weight: 10.0 **(g) Date Received:** 10/27/93 Injection Volume: 1.0 (uL) Date Extracted: 02/01/94 Dilution Factor: 1.0 02/18/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | | |------------------|--------------|-----------------------|-----|--| | 12674-11-2 | Aroclor-1016 | 0.050 | _ U | | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | | 12672-29-6 | Aroclor-1248 | 0.24 | | | | 11097-69-1 | Aroclor-1254 | 0.35 | | | | 11096-82-5 | Aroclor-1260 | 0.050 | U | | EPA SAMPLE NO. K46014 Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 39990 Phase Type: **BIOTA** Lab Sample ID: 202399 Phase Weight: 10.0 Date Received: **(g)** 10/27/93 Injection Volume: 1.0 (uL) Date Extracted: 02/01/94 Dilution Factor: 1.0 Date Analyzed: 02/19/94 Sulfur Clean-up: N (Y/N) > CAS NO. COMPOUND **CONCENTRATION** Q (mg/Kg) 12674-11-2 Aroclor-1016 0.050 U J 11104-28-2 Aroclor-1221 0.050 UJ 11141-16-5 Aroclor-1232 U ブ 0.050 53469-21-9 Aroclor-1242 0.050 UT 12672-29-6 Aroclor-1248 0.050 UJ 11097-69-1 Aroclor-1254 0.13 J 11096-82-5 05 Aroclor-1260 0.050 ### PERCENT LIPID RESULTS ## Percent Lipid Results | Sample ID | ample ID Lab ID | | Results | | |-----------|------------------|-----------|---------|--| | K46000 | 200345 earthworm | | 1.28% | | | K46001 | 200346 | earthworm | 1.27% | | | K46002 | 200347 | earthworm | 1.34% | | | K46003 | 201526 | earthworm | 1.75% | | | K46004 | 201527 | earthworm | 1.95% | | | K46005 | 201528 | earthworm | 1.77% | | | K46006 | 201529 | earthworm | 2.28% | | | K46007 | 202392 | earthworm | 1.61% | | | K46008 | 202393 earthworm | | 1.98% | | | K46009 | 202394 earthworm | | 1.31% | | | K46010 | 202395 earthworm | | NA | | | K46011 | 202396 earthworm | | 1.87% | | | K46012 | 202397 earthworm | | 1.75% | | | K46013 | 202398 | earthworm | 1.96% | | | K46014 | 202399 | earthworm | 2.50% | | NA Data not available due to laboratory accident ## PERCENT LIPID RESULTS ### DATA REVIEW FOR # ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 40009 PCB, PESTICIDE AND MERCURY ANALYSES BIOTA - FISH Analyses performed by: Aquatec, Inc. Colchester, Vermont Review performed by: * Blasland, Bouck & Lee, Inc. Syracuse, New York ### Summary The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40009 for the Biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and corrected sample results. Analyses were performed on the following samples: | | | | | | Analy | rsie . | |-----------|--------|---------|-------------|-----------------|-----------------|--------| | Sample ID | Lab ID | Species | Description | Sample Location | Past/PCB/
Ng | Milpid | | K40248F | 216198 | bass | fillet | Battle Creek | x | × | | K40248R | 216199 | bass | carcass | Battle Creek | | × | | K40249F | 216200 | bass | fillet | Battle Creek | x | × | | K40249R | 216201 | bass | CATCASS | Battle Creek | | × | | K40252F | 216202 | bass |
fillet | Otsego City Dam | х. | х | | K40252R | 216203 | bass | carcass | Otsego City Dam | | x | | K40253F | 216204 | bass | fillet | Otsego City Dam | × | x | | K40253R | 216205 | bass | Carcass | Otsego City Dam | | x | | K40254F | 216206 | bass | fillet | Otsego City Dam | × | x | | K40254R | 216207 | bass | carcass | Otsego City Dam | | x | | K40255F | 216208 | bass | fillet | Otsego City Dam | × | x | | K40255R | 216209 | bass | carcass | Otsego City Dam | | x | | K40256F | 216210 | bass | fillet | Otsego City Dam | x | x | | K40256R | 216211 | bass | CAICASS | Otsego City Dam | | x | | K40257F | 216212 | bass | fillet | Otsego City Dam | x | x | | K40257A | 216213 | bass | carcass | Otsago City Dam | | x | | K40276F | 216214 | bass | fillet | Otsego Dam | × | x | | K40276R | 216215 | bass | carcass | Otsego Dam | | x | | K40277F | 216216 | bass | fillet | Otsego Dam | x | × | | K40277R | 216217 | bass | carcass | Otsego Dam | | x | | K40278F | 216218 | bass | fillet | Otsego Dam | x | x | | K40278R | 216219 | bass | carcass | Otsego Dam | | x | | K40279F | 216220 | bass | fillet | Otsego Dam | x | × | | K40279R | 216221 | bass | carcass | Otsego Dam | | × | | K40280F | 216222 | bass | fillet | Otsego Dam | x | x | | K40280R | 216223 | bass | carcass | Otsego Dam | | × | | K40281F | 216224 | bass | fillet | Otsego Dam | x | x | | K40281R | 216225 | bass | Calcass | Otsego Dam | | × | | | | | | | Analy | Analysis | | |------------|--------------------|---------|-------------|-----------------|-----------------|----------|--| | Sample: ID | Sample ID Lab ID 5 | Species | Description | Sample Location | Pest/PC8/
Hg | %Lipid | | | K40282F | 216226 | bass | fillet | Otsego Dam | x | × | | | K40282R | 216227 | bass | CAICASS | Otsego Dam | | x | | | K40287F | 216228 | bass | fillet | Otsego Dam | x | x | | | K40287R | 216229 | bass | CAICASS | Otsego Dam | | × | | | K40288F | 216230 | bass | fillet | Otsego Dam | × | × | | | K40288R | 216231 | bass | CRICASS | Otsego Dam | | × | | | K40289F | 216232 | bass | fillet | Otsego Dam | x | x | | | K40289R | 216233 | bass | CAICA\$8 | Otsego Dam | | x | | | K40290F | 216234 | bass | fillet | Otsego Dam | x | x | | | K40290R | 216235 | bass | carcass | Otsego Dam | | x | | | K40302F* | 216236 | bass | fillet | Trowbridge | x | × | | | K40302R | 216237 | bass | carcass | Trowbridge | | x | | MS/MSD/DUP performed on sample ### PCB ANALYSES ### <u>Introduction</u> Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: #### Calibration The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for non-linearity at the low end of the calibration curve. ### Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. #### Data Assessment ### 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time. ### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No Aroclors were detected in the method or instrument blanks. ### 3. System Performance The system performance was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. ### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. All surrogate recoveries were within acceptable control limits. ### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. ### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries and the relative percent difference between recoveries (RPD) were within acceptable control limits. All spike recoveries in the matrix spike blank were within acceptable control limits. ### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ## DATA REVIEW CHECKLIST ### PCB Data Review
Checklist | | YES | NO | NA_ | |--|-----|-------------|-----| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | X | | | | Are the outliers correctly marked with an asterisk? | | | X | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | | <u> x</u> | | | If yes, were the samples reanalyzed? | | | x | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | | | | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | 0_ out of2 | | | | | Blanks | | | | | is a Method Blank Summary Form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | X | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | × | | | ### PCB Data Review Checklist - Page 2 | | YES | NO | NA | |---|----------|----|----| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | x | | | Do any field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | <u> </u> | | | | Aroclor 1221 | <u>X</u> | | | | Aroclor 1232 | x | | | | Aroclor 1242 | <u> </u> | | | | Aroclor 1248 | X | | | | Aroclor 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | x | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | x | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | x | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed? | X | | | | Are %D values for all compounds within limits (less than 15%)? | X | | | | Analytical Sequence Check | | | | | is a analytical sequence form present and complete for each column and each period of analyses? | x | | | | Was the proper analytical sequence followed? | X | - | | ## PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|------|----------|----| | Cleanup Efficiency Verification | | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | x | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | x | | | | PCB Identification | | | | | is both a combined and single column Aroclor Identification Report present for every sample? | x | | | | Do the combined column and individual column Aroclor identifications agree? | X | | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | X | | Compound Quantitation and Reported Detection Lis | mits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | × | | | Field Duplicates | | <u>-</u> | | | Where field duplicates submitted with the samples? | | x | | ### PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding Time | Surrogates | - Column 1 | Surrogates | - Column 2 | |------------|--------------|------------|------------|------------|------------| | | | TCX | DCB | TCX | DCB | | K40248F | OK for all | ок | ок | ок | ок | | K40249F | samples | | | | | | K40252F | | | | | · | | K40253F | | | | | | | K40254F | | | | | | | K40255F | | | | | | | K40256F | | | | | | | K40257F | | | | | | | K40276F | | | | | | | K40277F | | | | | | | K40278F | | | | | | | K40279F | | | | | | | K40280F | | | | | | | K40281F | | | | | | | K40282F | | | | | | | K40287F | | | | | | | K40288F | | | | | | | K40289F | | | | | | | K40290F | | | | | | | K40302F | | | | | | | K40302FMS | | | | | | | K40302FMSD | | | | | | Surrogate Standards TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: Surrogates diluted out D Recovery high Recovery low Unless otherwise noted, all parameters are within specified limits. ### PCB Calibration Summary Instrument: <u>HP2087</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 5/8/94 2109 | 6/11 | . 5/11 | 5/11 | 5/11 | 5/12 | 5/18 | |----------------------|--------------------|-------------|---------------|---------------|--------------|---------------|---------------| | Time: | to:
5/9/94-1730 | 1027 | 1103 | 2106 | 2142 | 0463. | 0529 | | 1 | initial Cal. | Cont
Cal | Cont.
Cal. | Cont.
Cal. | Cont.
Cal | Cont.
Celi | . Cont.
Es | | | *RSD | % D | % D | % D | % D | % 0 | % D | | Aroclor 1016 | 5.0 / 4.7 | | | | 1.0 | | | | Arocior 1221 | 3.8 / 2.8 | | | | | | | | Aroclor 1232 | 3.0 / 2.7 | | | | | | | | Aroclor 1242 | 3.7 / 2.9 | | | | | | 2.0 | | Aroclor 1248 | 3.6 / 3.1 | 7.5 | | 5.0 | | 2.0 | | | Aroclor 1254 | 9.3 / 8.9 | | | | | | | | Aroclor 1260 | 3.0 / 3.0 | | 6.0 | | | | | | Tetrachioro-m-xylene | 4.9 / 3.1 | | | | | | | | Decachlorobiphenyl | 8.1 / 11.8 | | | | | | | | Affected Samples: | 1 | | | | | | | | | | | | _ | | | | | | Ĺ | | | | ٨ | | | | | <u> </u> | | | | | | | | | Ĺ | | | | | | | | | | | | | | I | li . | | | | | | | | | | | ### PCB Calibration Summary - Page 2 Instrument: HP2087 Column: RTX-35 / RTX-5 | · | • | . totamento pubblicano | | • •••••• | em Democratic epococococo | | ************************* | |----------------------|---|------------------------|--|--|---------------------------|---------------|---------------------------| | Date: | | 5/12 | 5/12 | 5/12 | 5/12 | | | | Time: | | 1240 | 1816 | - 1728 | 1804 | | | | | Initial Cal. | Cont.
Cal. | Cont.
Cal. | Cent.
Cal. | Cont.
Call. | Cont.
Cal. | Cont. | | , | WRSD | X D | SD | %D | %0 | SAD. | %D | | Arocior 1016 | | | | | | | | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | | | | | | | Arocior 1242 | | | | | | | | | Aroclor 1248 | | 3.5 | | 7.0 | | | | | Aroclor 1254 | | | 11.0 | | | | | | Aroclor 1260 | | | | | 2.0 | | | | Tetrachioro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | _ | | | | Affected Samples: | ! | | | | | | ł | | | | | | | | | | | | | | | | | | ŀ | | | | 6. | | | | | } | · | | | | <u> </u> | | | | | | | | - | | | ļ | | · · | | <u> </u> | | | | - | | | } | | | | | | | | ### PCB Calibration Summary - Page 3 Instrument: <u>HP2087</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 5/18/94 1800 | 5/19 | 5/19 | 5/19 | 5/19 | 5/20 | 5/20 | |----------------------|---------------------|---------------|---------------|---------------|--------------|---------------|------| | Time: | to
5/19/94 1:254 | 1607 | 1640 | 2820 | 2358 | 0834 | 0768 | | | Initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont
Cali | Cont.
Cal. | ë 3 | | | *RSD | % D | %D | SED | % D | X D | 34.0 | | Arocior 1016 | 3.9 / 4.3 | | 11.0 | | | | | | Aroclor 1221 | 4.6 / 5.5 | | | _ | | | | | Aroclor 1232 | 2.9 / 3.2 | | | | | | | | Arocior 1242 | 3.6 / 3.3 | | | | 1.5 | • | | | Aroclor 1248 | 3.1 / 3.0 | 1.5 | | 0.5 | | 4.5 | | | Aroclor 1254 | 3.0 / 3.0 | | | | | | 4.0 | | Aroclor 1260 | 3.2 / 2.3 | | | | | | | | Tetrachioro-m-xylene | 7.7 / 5.0 | | | | | | | | Decachiorobiphenyl | 7.2 / 8.8 | | | | | | | | Affected Samples: | - | · | | | · | | | | | | | · | s i | | | | CORRECTED ANALYSIS SUMMARY FORMS Lab Name: Contract: Phase Type: Phase Weight: Dilution Factor: Injection Volume: Aquatec, Inc. 91082 **BIOTA** 10.0 1.0 1.0 (g) EPA SAMPLE NO. K40248F Lab Code: **IAUDA** SDG: 40009 Case: BIO Lab Sample ID: 216198 **Date Received:** 10/12/93 (uL) Date Extracted: 04/10/94 Date Analyzed: (Y/N) Sulfur Clean-up: N 05/12/94 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | ι | | 11104-28-2 | Aroclor-1221 | 0.050 | | | 11141-16-5 | Aroclor-1232 | 0.050 | (| | 53469-21-9 | Aroclor-1242 | 0.050 | · | | 12672-29-6 | Aroclor-1248 | 0.050 | | | 11097-69-1 | Aroclor-1254 | 0.079 | | | 11096-82-5 | Aroclor-1260 | 0.027 | | EPA SAMPLE NO. K40249F Lab Name: Aquatec, Inc. Lab Code: AQUAI
91082 · Contract: Case: BIO SDG: 40009 **BIOTA** Lab Sample ID: Phase Type: 216200 10.0 Phase Weight: **Date Received:** 10/12/93 (g) (uL) Injection Volume: 1.0 Date Extracted: 04/10/94 Dilution Factor: 1.0 Date Analyzed: 05/12/94 Sulfur Clean-up: (Y/N) > CAS NO. CONCENTRATION COMPOUND Q (mg/Kg) 12674-11-2 Aroclor-1016 0.050 U U 11104-28-2 Arocior-1221 0.050 11141-16-5 0.050 U Aroclor-1232 53469-21-9 Aroclor-1242 0.050 U Aroclor-1248 12672-29-6 0.050 U 11097-69-1 Aroclor-1254 0.092 11096-82-5 Aroclor-1260 0.039 J EPA SAMPLE NO. K40252F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: Phase Type: **BIOTA** 216202 Phase Weight: 10.0 (g) Date Received: 10/13/93 1.0 Injection Volume: (uL) **Date Extracted:** 04/10/94 1.0 Dilution Factor: Date Analyzed: 05/11/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | ι | | 11104-28-2 | Arocior-1221 | 0.050 | ι | | 11141-16-5 | Aroclor-1232 | 0.050 | į | | 53469-21-9 | Aroclor-1242 | 0.050 | į | | 12672-29-6 | Aroclor-1248 | 0.050 | Į | | 11097-69-1 | Aroclor-1254 | 0.26 | | | 11096-82-5 | Aroclor-1260 | 0.059 | | EPA SAMPLE NO. K40253F Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 Case: BIO SDG: 40009 Contract: Phase Type: **BIOTA** Lab Sample ID: 216204 Phase Weight: 10.0 (g) Date Received: 10/13/93 Injection Volume: 1.0 (uL) **Date Extracted:** 04/10/94 5.0 Dilution Factor: Date Analyzed: 05/11/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|-----| | 12674-11-2 | Aroclor-1016 | 0.86 | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | · U | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 2.4 | | | 11096-82-5 | Aroclor-1260 | 0.40 | | EPA SAMPLE NO. K40254F Lab Name: Aquatec, Inc. Lab Code: **AQUAI** Contract: 91082 Case: BIO SDG: 40009 Phase Type: **BIOTA** Lab Sample ID: 216206 Phase Weight: 10.0 **Date Received:** 10/13/93 **(g)** Injection Volume: 04/10/94 1.0 (uL) **Date Extracted:** Dilution Factor: _ 1.0 Date Analyzed: 05/11/94 Sulfur Clean-up: Υ (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.57 | | | 11096-82-5 | Aroclor-1260 | 0.17 | | EPA SAMPLE NO. K40255F Lab Name: Aquatec, Inc. IAUDA Lab Code: 91082 BIO 40009 Contract: Case: SDG: Phase Type: **BIOTA** Lab Sample ID: 216208 Phase Weight: 10.0 **Date Received:** 10/13/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 Dilution Factor: 1.0 Date Analyzed: 05/11/94 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | C | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | Ĺ | | 11104-28-2 | Arocior-1221 | 0.050 | L | | 11141-16-5 | Aroclor-1232 | 0.050 | l | | 53469-21-9 | Aroclor-1242 | 0.050 | | | 12672-29-6 | Aroclor-1248 | 0.050 | ί | | 11097-69-1 | Aroclor-1254 | 0.48 | | | 11096-82-5 | Aroclor-1260 | 0.11 | | Sulfur Clean-up: Ν (Y/N) EPA SAMPLE NO. K40256F Lab Name: Aquatec, Inc. Lab Code: **AQUAI** · Contract: 91082 Case: BIO SDG: 40009 Phase Type: **BIOTA** Lab Sample ID: 216210 10.0 10/13/93 Phase Weight: **Date Received: (g)** Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 Dilution Factor: 1.0 Date Analyzed: 05/11/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.088 | | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.21 | | | 11096-82-5 | Aroclor-1260 | 0.061 | | EPA SAMPLE NO. K40257F Lab Name: Aquatec, Inc. Lab Code: AQUAI Case: Contract: 91082 BIO SDG: 40009 Phase Type: **BIOTA** Lab Sample ID: 216212 Phase Weight: 10.0 **Date Received:** 10/13/93 (g) Injection Volume: 1.0 (uL) **Date Extracted:** 04/10/94 Dilution Factor: 1.0 Date Analyzed: 05/11/94 Sulfur Clean-up: N_ (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | C | |------------|--------------|-----------------------|-----| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | · U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.71 | - | | 11096-82-5 | Aroclor-1260 | 0.19 | | **EPA SAMPLE NO.** K40276F Lab Name: Aquatec, Inc. Lab Code: **AQUAI** . Contract: 91082 Case: BIO SDG: 40009 Phase Type: BIOTA Lab Sample ID: 216214 Phase Weight: 10.0 (g) Date Received: 10/13/93 Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 Dilution Factor: 2.0 Date Analyzed: 05/12/94 | COMPOUND | CONCENTRATION (mg/Kg) | <u>a</u> | |--------------|--|---| | Aroclor-1016 | 0.55 | | | Aroclor-1221 | 0.10 | U | | Aroclor-1232 | 0.10 | U | | Aroclor-1242 | 0.10 | U | | Aroclor-1248 | 0.10 | U | | Aroclor-1254 | 0.98 | | | Aroclor-1260 | 0.15 | | | | Aroclor-1221
Aroclor-1232
Aroclor-1242
Aroclor-1248
Aroclor-1254 | Aroclor-1016 0.55 Aroclor-1221 0.10 Aroclor-1232 0.10 Aroclor-1242 0.10 Aroclor-1248 0.10 Aroclor-1254 0.98 | Sulfur Clean-up: N (Y/N) EPA SAMPLE NO. K40277F Lab Name: Aquatec, Inc. Lab Code: **IAUDA** Contract: 91082 Case: BIO SDG: 40009 **BIOTA** Lab Sample ID: 216216 Phase Type: 10.0 Phase Weight: **Date Received:** 10/13/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 2.0 Date Analyzed: Dilution Factor: 05/12/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.68 | | | 11104-28-2 | Aroclor-1221 | 0.10 | Ų | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.0 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | Lab Name: Aquatec, Inc. ' Contract: 91082 EPA SAMPLE NO. 216218 Phase Type: **BIOTA** Lab Sample ID: 10.0 Phase Weight: 10/13/93 (g) **Date Received:** Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 2.0 Date Analyzed: 05/12/94 Dilution Factor: _ Sulfur Clean-up: N Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | C | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.65 | | | 11104-28-2 | Aroclor-1221 | 0.10 | L | | 11141-16-5 | Aroclor-1232 | 0.10 | ι | | 53469-21-9 | Aroclor-1242 | 0.10 | į | | 12672-29-6 | Aroclor-1248 | 0.10 | l | | 11097-69-1 | Aroclor-1254 | 1.2 | | | 11096-82-5 | Aroclor-1260 | 0.10 | ι | EPA SAMPLE NO. K40279F Lab Name: Aquatec, Inc. Lab Code: **AQUAI** Case: Contract: 91082 BIO SDG: 40009 Phase Type: _ **BIOTA** Lab Sample ID: 216220 Phase Weight: 10.0 Date Received: (g) 10/13/93 Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 Dilution Factor: __ 1.0 Date Analyzed: 05/12/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.31 | | | 11097-69-1 | Aroclor-1254 | 0.17 | | | 11096-82-5 | Aroclor-1260 | 0.055 | | EPA SAMPLE NO. K40280F Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 40009 Contract: Case: BIO SDG: Phase Type: **BIOTA** Lab Sample ID: 216222 Phase Weight: 10.0 Date Received: (g) 10/13/93 Injection Volume: 1.0 (uL) 04/10/94 **Date Extracted:** Dilution Factor: 10.0 Date Analyzed: 05/12/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.50 | U | | 11104-28-2 | Aroclor-1221 | 0.50 | U | | 11141-16-5 | Aroclor-1232 | 0.50 | U | | 53469-21-9 | Arocior-1242 | 0.50 | Ų | | 12672-29-6 | Aroclor-1248 | 0.50 | U | | 11097-69-1 | Aroclor-1254 | 3.4 | | | 11096-82-5 | Aroclor-1260 | 0.33 | J | EPA SAMPLE NO. K40281F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Phase Type: BIOTA Lab Sample ID: 216224 Phase Weight: 10.0 Date Received: 10/13/93 (g) 1.0 Injection Volume: (uL) Date Extracted: 04/10/94 1.0 Dilution Factor: Date Analyzed: 05/12/94 N Sulfur Clean-up: (Y/N) > CAS NO. COMPOUND CONCENTRATION Q (mg/Kg) 12674-11-2 Aroclor-1016 0.57 11104-28-2 Aroclor-1221 0.050 U 11141-16-5 Aroclor-1232 0.050 U 53469-21-9 Aroclor-1242 0.050 U 12672-29-6 Aroclor-1248 0.45 11097-69-1 Aroclor-1254 0.40 11096-82-5 Aroclor-1260 0.050 U 2.0 Dilution Factor: EPA SAMPLE NO. K40282F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 SDG:_ 40009 Case: BIO Phase Type: **BIOTA** Lab Sample ID: 216226 Phase Weight: 10.0 10/13/93 (g) **Date Received:** Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 Sulfur Clean-up: N (Y/N) Date Analyzed: 05/12/94 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.54 | | | 11104-28-2 | Aroclor-1221 | 0.10 | Ų | | 11141-16-5 | Arocior-1232 | 0.10 | Ĺ | | 53469-21-9 | Aroclor-1242 | 0.10 | į | | 12672-29-6 | Aroclor-1248 | 0.10 | ί | | 11097-69-1 | Aroclor-1254 | 1.3 | | | 11096-82-5 | Aroclor-1260 | 0.14 | | EPA SAMPLE NO. K40287F Lab Name: Lab Code: Aquatec, Inc. AQUAI Contract: 91082 Case: BIO SDG: 40009 Phase Type:
216228 **BIOTA** Lab Sample ID: 10/14/93 Phase Weight: 10.0 (g) Date Received: Injection Volume: 1.0 (uL) Date Extracted: 04/10/94 Dilution Factor: 1.0 Date Analyzed: 05/12/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Arocior-1016 | 0.071 | | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.26 | | | 11096-82-5 | Aroclor-1260 | 0.059 | | EPA SAMPLE NO. K40288F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Phase Type: **BIOTA** Lab Sample ID: 216230 Phase Weight: 10.0 (g) Date Received: 10/14/93 1.0 Injection Volume: __ (uL) Date Extracted: 04/10/94 2.0 Dilution Factor: Date Analyzed: 05/12/94 Sulfur Clean-up: N (Y/N) Ļ. CAS NO. COMPOUND CONCENTRATION Q (mg/Kg) 12674-11-2 Aroclor-1016 0.25 U 11104-28-2 Aroclor-1221 0.10 U 11141-16-5 Aroclor-1232 0.10 53469-21-9 Aroclor-1242 0.10 U 12672-29-6 Aroclor-1248 U 0.10 11097-69-1 Aroclor-1254 0.86 11096-82-5 Aroclor-1260 0.093 J EPA SAMPLE NO. K40289F Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 Contract: Case: BIO SDG: 40009 Phase Type: **BIOTA** Lab Sample ID: 216232 Phase Weight: 10.0 Date Received: 10/14/93 (g) Injection Volume: _ 1.0 04/10/94 (uL) **Date Extracted:** Dilution Factor: 1.0 Date Analyzed: 05/12/94 Sulfur Clean-up: Ν (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | i | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.41 | | | 11096-82-5 | Aroclor-1260 | 0.061 | | EPA SAMPLE NO. K40290F Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 · Contract: Case: BIO SDG: 40009 **BIOTA** Lab Sample ID: Phase Type: 216234 Phase Weight: 10.0 (g) **Date Received:** 10/14/93 Injection Volume: 1.0 (uL) **Date Extracted:** 04/10/94 Dilution Factor: 1.0 Date Analyzed: 05/12/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.62 | , | | 11097-69-1 | Aroclor-1254 | 0.34 | | | 11096-82-5 | Aroclor-1260 | 0.11 | | EPA SAMPLE NO. K40302F Lab Code: Lab Name: Aquatec, Inc. IAUDA 91082 SDG: 40009 Contract: Case: BIO Phase Type: **BIOTA** Lab Sample ID: 216236 10.0 Phase Weight: (g) **Date Received:** 10/14/93 Injection Volume: 1.0 Date Extracted: 04/10/94 (uL) 2.0 Dilution Factor: Date Analyzed: 05/19/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ٥ | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.44 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.2 | | | 11096-82-5 | Aroclor-1260 | 0.13 | | ### PESTICIDE ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. ### Data Assessment ### 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. All samples were originally analyzed within the specified holding time. Dilutions for samples K40252F, K40254F and K40255F were, however, analyzed over the specified holding times. All data for the dilutions have been qualified as estimated. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. ### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. ### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit with the following exception: Instrument HP2404 - RTX5 5/20/94 01:18 2-Bromobiphenyl 55.4% Data for this compound in samples K40302FMSD and K40302FMSD have been qualified as estimated based on the deviation. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. All surrogate recoveries were within acceptable control limits. ### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40253F | Aldrin | 49.5% | |-----------|--|---------------------------| | K40254F | Aldrin | 75.5% | | K40255F | Aldrin
4,4'-DDT | 98.1%
39.0% | | K40255FDL | 4,4'-DDT | 45.9% | | K40256F | Aldrin
Heptachlor Epoxide
4,4'-DDT | 43.7%
383.0%
49.5% | | K40257F | Aldrin
4,4'-DDT | 75.0%
473.1% | | K40276F | Aldrin
gamma-Chlordane
4,4'-DDT | 49.5%
157.3%
478.0% | | K40277F | Aldrin
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 54.1%
158.4%
26.7%
406.2% | |---------|---|-------------------------------------| | K40278F | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDT | 46.4%
27.7%
164.0%
98.7% | | K40279F | Aldrin
Heptachlor Epoxide
4,4'-DDE | 74.1%
42.9%
28.0% | | K40280F | Aldrin
gamma-Chlordane
4,4'-DDT | 113.5%
227.8%
415.9% | | K40281F | Aldrin
gamma-Chlordane
4,4'-DDT | 38.7%
187.3%
169.8% | | K40282F | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDT | 94.4%
189.7%
321.8%
216.7% | | K40288F | Aldrin
gamma-Chlordane
4,4'-DDT | 56.5%
134.5%
281.3% | | K40289F | Aldrin
4,4'-DDE | 55.9%
25.6% | | K40290F | Aldrin
4,4'-DDE | 80.5%
29.0% | | K40302F | Aldrin
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 50.8%
110.2%
28.0%
532.5% | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. ### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. Recoveries of Aldrin were above the specified control limit in both the matrix
spike and matrix spike duplicate samples. The high recoveries can be attributed to positive interference from PCBs present in the matrix spike. All other recoveries and the relative percent difference (RPD) between recoveries were within acceptable control limits. Matrix spike recoveries were with acceptable control limits for the matrix spike blank (MSB) sample. No qualifiers have been added to the samples based on matrix spike performance. #### 8. General Comments The recommended data usage for the sample dilutions is as follows: #### K40252F and K40252FDL The data from sample K40252F should be used for all compounds except 4,4'-DDE. The data from the dilution K40252FDL should be used for 4,4'-DDE only. #### K40254F and K40254FDL The data from sample K40254F should be used for all compounds except 4,4'-DDE. The data from the dilution K40254FDL should be used for 4,4'-DDE only. #### K40255F and K40255FDL The data from sample K40255F should be used for all compounds except 4,4'-DDE and Aldrin. The data from the dilution K40255FDL should be used for 4,4'-DDE and Aldrin only. #### 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. Data Validation Checksheets ### Pesticide Data Validation Checklist | | YES | NO | NA_ | |--|-----|----------|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Holding Times | | | | | Have any holding times been exceeded? | X | | | | Surrogate Recovery | | | | | Are the surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | X | | | | Are the outliers correctly marked with an asterisk? | | | X | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | | <u> </u> | | | If yes, were the samples reanalyzed? | | | X | | Were the method blanks reanalyzed? | | | X | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | | | | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | | | | | Blanks | | | | | is the method blank summary form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | X | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ### Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA | |--|------------|-------------|----| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | x | | | Do any trip/field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | x | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts presblanks, and MS/MSD? | sent for a | all samples | • | | peak resolution check | <u> </u> | | | | performance evaluation mixtures (BCS) | <u> </u> | | | | Toxaphene multipoint calibration | <u> </u> | | | | Pesticide/PBB multipoint calibration | <u> </u> | | | | Pesticide/PBB mid-point standard | <u> </u> | | | | instrument blanks | X | | | | Are Forms Vi 1-4 present and complete for each column and analytical sequence? | x | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | x | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | X | | | | is Form VII-1 present for each BCS analyzed for both columns? | X | | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | X | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | | X | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | × | | | | Are RPD values for all compounds < 25%? | × | | | | Analytical Sequence Check | | | | ### Pesticide/PCB Data Validation Checklist - Page 3 | NO | NA | |----------|-----------| | | | | | | | | | | | | | | | | | X | | | | | | | | | X | | | | | | | | | X | | X | | | X | | | | | | | | | | · · · · · | | | | | X | | | | | | <u> </u> | | | | <u> </u> | # Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample ID | Holding | Surrogates | - Column 1 | Surrogates | - Column 2 | |------------|---------------------------------------|------------|------------|------------|------------| | | Time | TCX | DCB | TCX | DCB | | K40248F | OK for all | ок | OK . | ок | ОК | | K40249F | samples | | | | | | K40252F | | | | | | | K40252FDL | | | | | | | K40253F | | | <u> </u> | | | | K40254F | | | | | | | K40254FDL | | | | | | | K40291WMSD | · · · · · · · · · · · · · · · · · · · | | | | | | K40292W | | | | | | | K40255F | | | | | | | K40255FDL | | | | | | | K40256F | | | | | | | K40257F | | | | | | | K40276F | | | | | | | K40277F | | | | | | | K40278F | | | | | | | K40279F | | | | | | | K40280F | | | | | | | K40281F | | | | | | | K40282F | | | | | | | K40287F | | | | | | | K40288F | | | | | | | K40289F | | | | ĸ. | | | K40290F | | | | | | | K40302F | | | | | | | K40302FMS | | | | | | | K40302FMSD | | | | | | Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: Surrogate diluted out Recovery high D Recovery low Unless otherwise noted, all samples are within specified limits. ### Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/17/94 | 5/18 | 5/19 | 5/19 | 5/19 | 5/20 | 5/24 | |-----------------------------|-----------------|---------------|----------------|---------------|---------------|---------------|----------------| | Time: | 17:19 | 15:56 | 90:16 | 08:36 | 16:57 | 01:18 | 09:01 | | | initial
Cal. | Cont.
Cal. | Cont.
(Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | % ASD | %D | % D | % D | % D | % D | %D | | 2-Bromobiphenyl | ok | ok | ok | ok | ok | ok | 55.4 | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachiorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chiordane | ·
! | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachior | | - | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | : |
 | | | | | | Hexabromobiphenyl
(BP-6) | | - | | <u> </u> | | <u>.</u> | | | Toxaphene | | | | | | | | | Tetrachloro-m-xylene | | | | <u></u> | • | <u> </u> | <u> </u> | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | K40302F
MSD | | | | | | | | | MSB | | | | | | | | | | | | • | | | | | | | | ſ | | | | | | | 1 | ### Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | | 5/25 | | | | | | |-----------------------------|-----------------|---------------|---------------|---------------|--|---------------|---------------| | Time: | | 00:48 | | | | | | | | Initial
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cons.
Cat. | Cont.
Cal. | Cont.
Cal. | | | %RSD | %D | %D | %D | %D | %D | %D | | 2-Bromobiphenyl | | ok | | | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chiordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | • | | | | | | | Tetrachloro-m-xylene | | | | | S to | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | | | Ī | | | | | | | | | | | | | | | 1 | 1 | | Ī | | | | | | | | | ř | | | | | | | | ### Pesticide/PBB Calibration Summary - Page 3 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/17/94 | 5/18 | 5/19 | 5/19 | 5/19 | 5/20 | 5/24 | |-----------------------------|----------------|---------------|---------------|---------------|---------------|---------------|----------------| | Time; | 17:19 | 15:56 | 00:16 | 08:36 | 16:57 | 01:18 | 09:01 | | 1 | Initial
Cal | Cont.
Cal. | Cont.
Cal. | Cont.
Gal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | % D | %D | % D | % D | % D | %D | | 2-Bromobiphenyl | ok | 3-Bromobiphenyl | | <u></u> | | | | ļ | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | · | | | | | <u> </u> | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | _ | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | - | | | | | trans-Nonachlor | | | | - | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | _ | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | |
Toxaphene | | | | | | | | | Tetrachioro-m-xylene | | | | | C a | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | K40302I
MSD | | | | | | | | | мѕв | Γ | | | | | | | | ### Pesticide/PBB Calibration Summary - Page 4 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | | 5/25 | | | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | | 90:48 | | | | | | | | initial
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | % D | %D | % D | X D | % D | % D | | 2-Bromobiphenyl | | ok | | | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | . == | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | |] | | | | | l
 | | Toxaphene | | | | | | | | | Tetrachloro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | | | { | Ī | | | | | | | | Corrected Sample Analysis Data Sheets Soxhlet 1.0 Extraction: Dilution Factor: r Client ID No. K40248F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216198 Phase Type: **Biota Date Received:** 10/12/93 Phase Weight: 10.0 Date Extracted: 04/10/94 g Date Analyzed: Sulfur Clean-up: 05/19/94 | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | |------------|--------------------|--------------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.018 | | | 60-57-1 | Dieldrin | 0.010 | υ | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40249F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216200 Date Received: 10/12/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | |------------|--------------------|--------------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | Ü | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.022 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. K40252F Lab Code: AQUAI SDG: 40009 Case: BIO SDG: 40009 Lab Sample ID: 216202 hase Type: Biota Date Received: 10/13/93 Client ID No. 04/10/94 05/18/94 Phase Type:BiotaDate Received:Phase Weight:10.0 gDate Extracted:Extraction:SoxhletDate Analyzed:Dilution Factor:1.0Sulfur Clean-up: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0052 | | | 39765-80-5 | trans-Nonachlor | 0.011 | | | 72-55-9 | 4,4'-DDE | 0.30 0.17 | *DJ | | 60-57-1 | Dieldrin | 0.041 | | | 72-54-8 | 4,4'-DDD | 0.081 | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.068 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40253F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 4.0 Lab Sample ID: 216204 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/18/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|----| | | | | | | | 2052-07-5 | 2-Bromobiphenyl | 0.040 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.040 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.040 | U | | | 118-74-1 | Hexachlorobenzene | 0.020 | U | | | 58-89-9 | gamma-BHC | 0.020 | U | | | 309-00-2 | Aldrin | 0.066 | 5 | | | 1024-57-3 | Heptachlor Epoxide | 0.056 | | | | 5103-74-2 | gamma-Chlordane | 0.024 | | ·f | | 5103-71-9 | alpha-Chlordane | 0.020 | U | · | | 39765-80-5 | trans-Nonachlor | 0.020 | U | | | 72-55-9 | 4,4'-DDE | 0.14 | | | | 60-57-1 | Dieldrin | 0.040 | U | | | 72-54-8 | 4,4'-DDD | 0.040 | U | | | 5103-73-1 | cis-Nonachlor | 0.020 | U | | | 50-29-3 | 4,4'-DDT | 0.040 | U | | | 36355-01-8 | Hexabromobiphenyl | 0.080 | U | | | 8001-35-2 | Toxaphene | 0.80 | U | | Lab Name: Aquatec, Inc. K40254F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216206 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 | Lab Sample ID: | 216206 | |------------------|----------| | Date Received: | 10/13/93 | | Date Extracted: | 04/10/94 | | Date Analyzed: | 05/19/94 | | Sulfur Clean-up: | N | Client ID No. | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|-----------------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0053 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chiordane | 0.0060 | | | 39765-80-5 | trans-Nonachior | 0.020 | | | 72-55-9 | 4,4'-DDE | 0,17 -0.30- | × D2 | | 60-57-1 | Dieldrin | 0.073 | | | 72-54-8 | 4,4'-DDD | 0.12 | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.11 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. K40255F Lab Code: AQUAI K40255F Contract: 91082 SDG: 40009 Case: BIO SDG: 40009 Chase Type: Biota Date Received: 10/13/93 Client ID No. 04/10/94 05/19/94 N Phase Type:BiotaDate Received:Phase Weight:10.0 gDate Extracted:Extraction:SoxhletDate Analyzed:Dilution Factor:1.0Sulfur Clean-up: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-------------------------|------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0,010 0.0053 | UD | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.18 -0.16- | ₹ DJ | | 60-57-1 | Dieldrin | 0.011 | | | 72-54-8 | 4,4'-DDD | 0.037 | | | 5103-73-1 | cis-Nonachior | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.042 | 7 | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40256F SDG: 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216210 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |----------------------|--------------------|-----------------------|---|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.0071 | 4 | | | 1024 57 3 | Heptachlor Epoxide | 0.0053 | | -R | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | • | | 5103-71-9 | aipha-Chiordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.076 | | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.020 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50-29-3 | 4,4'-DDT | 0.020 | 4 | i | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO 1 Client ID No. K40257F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216212 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | | | | | _ | |------------|--------------------|-----------------------|-----|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |
2052-07-5 | 2-Bromobiphenyl | 0.010 | U | ĺ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | l | | 118-74-1 | Hexachlorobenzene | 0.0050 | ี่ป | | | 58-89-9 | gamma-BHC | 0.0050 | U | 1 | | 309-00-2 | Aldrin | 0.010 | JN | | | 1024-57-3 | Heptachlor Epoxide | 0.0084 | | l | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.042 | | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.010 | U | | | 5103-73-1 | cis-Nonachlor | 0.0050 | υ | | | 50 29 3 | -4,4' DDT | 0.012 | | I-R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U |] | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. K40276F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216214 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216214 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N Client ID No. | _ | | | | | | |---|------------|--------------------|-----------------------|---|---| | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | Г | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | l | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | Í | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | | 309-00-2 | Aldrin | 0.028 | 4 | İ | | | 1024-57-3 | Heptachlor Epoxide | 0.024 | | | | Ε | 5103-74-2 | gamma Chlordane | 0.0089 | | R | | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | 1 | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | ĺ | | | 72-55-9 | 4,4'-DDE | 0.051 | | | | | 60-57-1 | Dieldrin | 0.010 | U | | | | 72-54-8 | 4,4'-DDD | 0.014 | | | | | 5103-73-1 | cis-Nonachior | 0.0050 | U | | | E | 50-29-3 | 4,4'-DDT | 0.015 | | R | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Dilution Factor: Client ID No. K40277F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet 1.0 Lab Sample ID: 216216 Date Received: 10/13/93 Date Extracted: 04/10/94 SDG: Date Analyzed: Sulfur Clean-up: 05/19/94 N | | | | | - | |--------------------|--------------------|-----------------------|----|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | ĺ | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.029 | JN | | | 1024-57-3 | Heptachlor Epoxide | 0.025 | | | | 5103 74 2 | gamma Chlordane | 0.0089 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.043 | 7 | 1 | | 60-57-1 | Dieldrin | 0.010 | U | 1 | | 72-54-8 | 4,4'-DDD | 0.013 | | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50-29-3 | 4,4'-DDT | 0.013 | | I R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40278F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216218 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | - T | | | | | i | |-----|------------|--------------------|-----------------------|---|----| | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | i | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | | 309-00-2 | Aldrin | 0.026 | J | l | | | 1024-57-3 | Heptachlor Epoxide | 0.026 | 7 | | | | 5103-74-2 | gamma Chlordane | 0.0086 | | R | | | 5103-71-9 | alpha-Chiordane | 0.0058 | | | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | İ | | | 72-55-9 | 4,4'-DDE | 0.093 | | | | | 60-57-1 | Dieldrin | 0.011 | | | | | 72-54-8 | 4,4'-DDD | 0.033 | | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | | 50-29-3 | 4,4'-DDT | 0.031 | | -R | | Г | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | Г | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40279F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216220 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | a | |------------|--------------------|--------------------------|----------------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U ⁻ | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.011 | אנ | | 1024-57-3 | Heptachlor Epoxide | 0.0098 | 7 | | 5103-74-2 | gamma-Chiordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.018 | 4 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40280F 40009 Phase Type: Phase Weight: Extraction: Dilution Factor: Biota 10.0 g Soxhlet 3.0 Lab Sample ID: 216222 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|----| | 2052-07-5 | 2-Bromobiphenyl | 0.030 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.030 | Ü | | | 92-66-0 | 4-Bromobiphenyl | 0.030 | U | | | 118-74-1 | Hexachlorobenzene | 0.015 | U | | | 58-89-9 | gamma-BHC | 0.015 | U | | | 309-00-2 | Aldrin | 0.053 | | -R | | 1024-57-3 | Heptachlor Epoxide | 0.078 | | | | 5103-74-2 | gamma-Chlordane | 0.025 | | -R | | 5103-71-9 | alpha-Chlordane | 0.015 | | | | 39765-80-5 | trans-Nonachlor | 0.015 | U | | | 72-55-9 | 4,4'-DDE | 0.16 | | | | 60-57-1 | Dieldrin | 0.030 | U | | | 72-54-8 | 4,4'-DDD | 0.036 | | | | 5103-73-1 | cis-Nonachlor | 0.015 | U | | | 50 20 3 | 4,4'-DDT | 0.049 | | -R | | 36355-01-8 | Hexabromobiphenyl | 0.060 | U | ` | | 8001-35-2 | Toxaphene | 0.60 | U | | Lab Name: Aquatec, Inc. K40281F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216224 hase Type: Biota Date Received: 10/13/93 Client ID No. | | • | Lab Sample IU: | 216224 | |------------------|---------|------------------|----------| | Phase Type: | Biota | Date Received: | 10/13/93 | | Phase Weight: | 10.0 g | Date Extracted: | 04/10/94 | | Extraction: | Soxhlet | Date Analyzed: | 05/19/94 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | | | | COMPOUND | CONCENTRATION (mg/Kg) | a | | |-----------------|---|---------|---------| | 3romobiphenyl | 0.010 | U | | | Bromobiphenyl | 0.010 | υ | | | Bromobiphenyl | 0.010 | U | | | achlorobenzene | 0.0050 | U | | | gamma-BHC | 0.0050 | U | | | Aldrin | 0.030 | 7 | | | tachlor Epoxide | 0.027 | | | | nma-Chlordane | 0.0071 | | R | | ha-Chlordane | 0.0050 | U | , | | ns-Nonachior | 0.0050 | U | | | 4,4'-DDE | 0.039 | | | | Dieldrin | 0.010 | U | | | 4,4'-DDD | 0.023 | | | | is-Nonachlor | 0.0050 | υ | | | 4,4' DDT | 0.013 | | l-R | | abromobiphenyl | 0.020 | U | `` | | Toxaphene | 0.20 | U | | | | tachlor Epoxide nma Chlordane pha-Chlordane nns-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD is-Nonachlor 4,4'-DDT abromobiphenyl | (mg/Kg) | (mg/Kg) | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40282F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 2.0 Lab Sample ID: 216226 Date Received: 10/13/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | | | | | _ | |--------------------|--------------------|-----------------------|---|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | | 2052-07-5 | 2-Bromobiphenyl | 0.020 | U | 1 | | 2113-57-7 | 3-Bromobiphenyl | 0.020 | U | 1 | | 92-66-0 | 4-Bromobiphenyl | 0.020 | U | 1 | | 118-74-1 | Hexachlorobenzene | 0.010 | U |] | | 58-89-9 | gamma-BHC | 0.010 | U |] | | 309 00 2 | Aldrin | 0.028 | | I-R | | 1024-57-3 | Heptachlor Epoxide | 0.027 | | 1 ` | | 5103-74-2 | gamma-Chlordane | -0.011 | | 1R | | 5103-71-9 | alpha-Chlordane | 0.010 | U | 1 | | 39765-80-5 | trans Nonachior | 0.011 | | IR. | | 72-55-9 | 4,4'-DDE | 0.095 | | 1 | | 60-57-1 | Dieldrin | 0.020 | U | 1 | | 72-54-8 | 4,4'-DDD | 0.025 🛦 | | 1 | | 5103-73-1 | cis-Nonachlor | 0.017 | | 1 | | 50-29-3 | 4,4'-DDT | 0.032 | | 1R | | 36355-01-8 | Hexabromobiphenyl | 0.040 | U | 1 ` | | 8001-35-2 | Toxaphene | 0.40 | U |] | | | | | | - | 1.0 Dilution Factor: Client ID No. Lab Name: K40287F Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216228 Phase Type: **Biota Date Received:** 10/14/93 Phase Weight: 10.0 Date Extracted: 04/10/94 Extraction: 05/19/94 Soxhlet Date Analyzed: Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | α | |------------|--------------------|-----------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | υ | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | |
39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.012 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | Ü | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40288F 40009 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 216230 Date Received: 10/14/93 Date Extracted: 04/10/94 Date Analyzed: 05/19/94 Sulfur Clean-up: N | | | | | _ | |------------|--------------------|-----------------------|----|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | 1 | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | 1 | | 58-89-9 | gamma-BHC | 0.0050 | U | 1 | | 309-00-2 | Aldrin | 0.016 | MC | 1 | | 1024-57-3 | Heptachlor Epoxide | 0.013 | | | | 5103 74 2 | gamma-Chlordane | 0.0058 | | ŀR | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.050 | | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.011 a | · | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50-29-3 | 4,4' DDT | 0.015 | | I-R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1'` | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Client ID No. Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216232 Phase Type: Biota Date Received: 10/14/93 | Biota | | |---------|-------------------| | 10.0 g | | | Soxhlet | | | 1.0 | | | | 10.0 g
Soxhlet | | Lab Sample ID: | 216232 | | |------------------|----------|---| | Date Received: | 10/14/93 | | | Date Extracted: | 04/10/94 | | | Date Analyzed: | 05/19/94 | _ | | Sulfur Clean-up: | N | _ | | | | _ | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------------|-----------------------|------------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | . U | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ú | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.014 | NC | | 1024-57-3 | Heptachlor Epoxide | 0.011 | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.022 | T | | 60-57-1 | Dieldrin | 0.010 | Ú | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachior | 0.0050 * | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, inc. Lab Code: AQUAI Contract: 91082 Case: BIO **Biota** Soxhlet 1.0 10.0 Phase Type: Extraction: Phase Weight: Dilution Factor: Client ID No. K40290F 40009 Lab Sample ID: 216234 **Date Received:** 10/14/93 **Date Extracted:** 04/10/94 Date Analyzed: 05/19/94 SDG: Sul | ato minigatos. | 00/10/1 | , , | |----------------|---------|-----| | ifur Clean-up: | N | | | | | | | | | | , | |------------|--------------------|-----------------------|----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.017 | NT | | 1024-57-3 | Heptachlor Epoxide | 0.018 | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chiordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.027 | 17 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40009 Lab Sample ID: 216236 hase Type: Biota Date Received: 10/14/93 Client ID No. Phase Type: Date Received: 10/14/93 **Biota** Phase Weight: 10.0 Date Extracted: 04/10/94 Extraction: Soxhlet Date Analyzed: 05/19/94 Sulfur Clean-up: Dilution Factor: 1.0 N | CAS NO. | COMPOUND | CONCENTRATION | Q | |------------|--------------------|---------------|----| | | | (mg/Kg) | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.026 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.023 | | | 5103-74-2 | gamma Chiordane | 0.0088 | | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.042 | J | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.011 | | | 36355-01-8 | Hexabromobiphenyi | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | ## MERCURY ANALYSES #### Introduction Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: #### Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). #### Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - Duplicate analysis not within control limits. - + Correlation coefficient for MSA is less than 0.995. #### Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### Data Assessment #### 1. Holding Time The recommended holding times for mercury analyses is 28 days from tissue homogenization. All samples were analyzed within this holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. #### 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. #### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. #### 3.3 CRDL Standard All CRDL standard recoveries were within acceptable limits. #### 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. #### 4.1 Matrix spike Recovery for the matrix spike was below acceptable limits. All data have been qualified as estimated based on the deviation. #### 4.2 Laboratory Duplicate The laboratory duplicate relative percent difference (RPD) was within acceptable limits. #### 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. #### 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. #### 7. Furnace QC No furnace analyses were performed. #### 8. Method of Standard Additions (MSA) No MSA were performed. #### 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the
guidelines specified in the method. **Data Validation Checksheets** | | YES | NO | NA | |--|---|-------------|-------------| | Data Completeness and Deliverables | | | | | is there a narrative or cover letter present? | <u> </u> | | | | Are the sample numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | . X | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | X | | | | Sample No.? | <u> </u> | | <u> </u> | | SDG No.? | <u>X</u> | | | | Correct units? | X | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | Is the distillation log for mercury present? | X | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP . | | | X | | Flame AA | | | X | | Furnace AA | | | X | | Mercury | X | | | | Cyanides | | | X | | Is the data legible? | × | | | | is the data properly labeled? | × | | | | Holding Times | *************************************** | | ********* | | Were mercury analyses performed within 28 days? | <u> </u> | | | | | YES | NO | NA | |---|----------|-------------|----| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | | | Are all forms complete? | X | | | | Are correct units indicated on Form I's? | X | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | X | | | | Was a brief physical description of samples given on Form I's? | | X | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | | | X | | ls a record of 5 point calibration present for Hg
analysis? | X | | | | ls a record of 4 point calibration present for: | | | | | Flame AA? | | | X | | Furnace AA? | | | X | | Cyanides? | | | X | | ls one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | X | | ls correlation coefficient less than .995 for: | | | | | Mercury Analysis? | <u> </u> | | | | Cyanide Analysis? | | | X | | Atomic Absorption Analysis? | | | X | | Form II A (Initial and Continuing Calibration Verifica | ition) | ·— - · ·— | | | Present and complete for every metal and cyanide? | X | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | X | | Hg (80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | X | | | YES | NO | NA | |--|----------|----------|----| | Was continuing calibration performed every 10 samples or every 2 hours? | X | | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | X | | Was a mid-range calibration verification standard distilled and analyzed for cyanide analysis? | | <u>.</u> | X | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | ******** | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | X | | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | X | | Form III (Initial and Continuing Calibration Blanks) | | | | | Present and complete? | <u>X</u> | | | | Was an initial calibration blank analyzed? | X | | | | Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)? | X | | | | Are all calibration blanks (when IDL <crdl) (crdls)?<="" contract="" detection="" equal="" less="" limits="" or="" required="" td="" than="" the="" to=""><td>X</td><td></td><td></td></crdl)> | X | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | X | | Form III (Preparation Blank) | | | | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | X | | | | each batch of digested samples? | X | | | | each matrix type? | X | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | X | · | | | YES | NO | NA | |--|-----------|---------|----| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | X | | Is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | X | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | | | | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | X | | Are all Interference Check Sample results inside the control limits (±20%)? | | | Х | | If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | × | | Form V A (Spiked Sample Recovery - Pre-Digestion/P | re-Distil | lation) | | | Present and complete for: | | | | | each SDG? | <u> </u> | | - | | each matrix type? | x | | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | | X | | | If no, is sample concentration greater than or equal to four times spike concentration? | | X | | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | X | | | | Are any spike recoveries: | | | | | less than 10%? | | X | | | between 10-74%? | X | | | | between 126-200%? | | X | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | | | | Present and complete for: | | | | | each SDG? | X | | • | | • | | | | | · | YES | NO | NA | |---|----------|-------------|----| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | X | • | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | × | | | | If no, are all results outside the control limits flagged with an * on Form I's and VI? | | | X | | ls any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | X | | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | | X | | Form VII (Laboratory Control Sample) | | | | | Was one LCS prepared and analyzed for: | | | | | each SDG? | <u> </u> | | | | each batch samples digested/distilled? | X | | | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | ls LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | X | | each matrix type? | | | X | | Was field blank(s) used for Serial Dilution Analysis? | | | X | | Are results outside control limit flagged with an "E""
on Form I's and Form IX when initial concentration of
Form IX is equal to 50 times IDL or greater. | | | X | | Are any % difference values: | | - | | | > 10%? | | | X | | ≥100%? | | | X | | Furnace Atomic Absorption (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | X | | | | | | | | YES | NO | NA | |--|-------------|-------------|-------------| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | | | X | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X | | is analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | - | | | Present? | | X | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | X | | Was MSA required for any sample but not performed? | | <u> </u> | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | | X | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | X | | Field Blank | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | × | | Form X, XI, XII (Verification of Instrumental Paramet | ers) | | | | Is verification report present for : | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation
Factors (annually)? | | | X | | ICP Linear Ranges (quarterly)? | | | × | | Form X (Instrument Detection Limits) | | | | | Are IDLs present for: | | | | | all the analytes? | X | | | | all the instruments used? | X | | | | | | | | | | YES | NO | NA | |---|-----|----|----| | is IDL greater than CRDL for any analyte? | | X | | | If yes, is the concentration of Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than 5 x IDL. | | | X | | Was any sample result higher linear range of ICP. | | | X | | Was any sample result higher than the highest calibration standard for non-ICP parameters? | | X | | | If yes for any of the above, was the sample diluted to obtain the result on Form !? | | | X | | | | | | Corrected Sample Analysis Data Sheets ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | THOROTOM TO | minuloto pain . | J., 22 2 | 1 | |-----------------------|------------------------|-----------------------|---------------------------------------|------------|-----------------| | Lab Name: AQUA | ATEC | | Contract: 9 | 1082 | K40248F | | Lab Code: AQUA | AI_ Ca | se No.: BI | O SAS No. | • | SDG No.: 40009_ | | Matrix (soil/w | water): FISH | _ | | Lab Samp | le ID: 216198 | | Level (low/med | l): LOW_ | | | Date Rec | eived: 10/12/93 | | <pre>\$ Solids:</pre> | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | | | | NR | | | 7440-36-0 | Antimony_ | | - | NR | | | 7440-38-2
7440-39-3 | Arsenic | | | NR
NR | | | | Beryllium | | - | NR NR | | | 7440-43-9 | Cadmium | | - | NR | | | 7440-70-2 | | | - | NR | | | 7440-47-3 | Chromium | | - | NR | | | 7440-48-4 | Cobalt | | - | NR | | | 7440-50-8 | Copper | | - | NR | | | 7439-89-6 | Iron | | - | NR | | | 7439-92-1 | Lead | | | NR | | | 7439-95-4 | Magnesium | | | NR | | | 7439-96-5 | Manganese | | | NR | | | | Mercury | 0.05 | _ ZN | CV | | | 7440-02-0 | Nickel | | _ | NR | | • | 7440-09-7 | Potassium | | l_l | NR | | | 7782-49-2 | Selenium_ | · · · · · · · · · · · · · · · · · · · | _ | NR | | | 7440-22-4 | Silver | | - | NR | | | 7440-23-5 | Sodium | | | NR | | | 7440-28-0
7440-62-2 | Thallium_
Vanadium | | | NR
NR | | | 7440-62-2 | Zinc | | - | NR | | | 7440-00-0 | Cyanide | | - | NR | | | | cyanitae | | - | . [| | | · | | | l l | . 1 1 | | Color Before: | | Clarit | ty Before: | <i>6</i> 6 | Texture: | | Color After: | | Clarit | ty After: | | Artifacts: | | Comments: | ## 1 INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | | Ca | | Contract: 9: | | | · | |--|---|--|--|--|--|---| | soil/water) | | | U SAS NO. | : _ | | SDG No.: 40009 | | | FISH | - | | Lal | Sampl | e ID: 216200 | | .ow/med): | LOW_ | | | Dat | te Rece | eived: 10/12/93 | | :: | 100. | 0 | | | | | | Concenti | ation | Units (ug | /L or mg/kg dry | y we | eight): | MG/KG | | CAS 1 | lo. | Analyte | Concentration | С | Q | M | | 7420- | 00-E | Aliminim | | _ - | | NR | | | | Antimony | | - - | | NR | | • | | | | - - | | NR | | | | Barium | | | | NR | | | | | | _ _ | | NR | | | | | | _ - | | NR | | F - | | | | _ - | | NR | | i i | | | | - - | | NR
NR | | | | | | - - | | NR NR | | | | | | - - | | NR NR | | | | | | <u> - -</u> | | NR | | | | | | - - | | NR | | | | | | - - | | NR | | 7439- | 97-6 | | 0.03 | - : | <u>7 N</u> | cv | | | 02-0 | Nickel | | | | NR | | | | | | | | NR | | | | | | _ - | | NR | | 1 | | | | _ - | | NR | | | | | | _ - | | NR | | | | | | 1_1- | [| NR | | and the second s | | | | - - | | NR | | 7440- | 00-0 | | | [-[- | [| NR | | | | Cyanide | | - - | | NR | | fore: | | Clarit | ty Before: | e | | Texture: | | ter: | | Clarit | ty After: | | | Artifacts: | | : | | | · | | | | | | CAS N 7429- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7439- 7439- 7439- 7439- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- 7440- | CAS No. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-99-6 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-23-5 7440-28-0 7440-66-6 | CAS No. 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-98-6 7439-95-4 7439-95-4 7439-96-5
7440-02-0 7440-02-0 7440-02-0 7440-23-5 7440-23-5 7440-28-0 7440-66-6 fore: Chromium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide fore: Clarif | CAS No. Analyte Concentration 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 8eryllium Cadmium Cadmium Calcium Chromium 7440-48-4 Cobalt 7440-50-8 7439-89-6 7439-92-1 Ray | CAS No. Analyte Concentration C 7429-90-5 7440-36-0 Antimony Arsenic Barium Cadmium Ca | 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-43-9 7440-47-3 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 Magnesium 7439-95-4 Manganese Mercury Mickel 7440-02-0 7440-09-7 7782-49-2 Selenium 7440-23-5 7440-23-5 7440-28-0 7440-66-6 Clarity Before: **Clarity After: | #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Mame: AQU | ATEC | | Contract: 91 | 1082 | ! | K40252F | |--------------|------------------------|--|---------------------------------------|--------------|----------|----------------| | | | | O SAS No.: | : | | SDG No.: 40009 | | trix (soil/ | -
water): FISH | <u>. </u> | | Lak | Sampl | e ID: 216202 | | vel (low/med | d): LOW_ | _ | | Dat | e Rece | ived: 10/13/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dry | y we | eight): | MG/KG | | | CAS No. | Analyte | Concentration | c | Q | M | | | 7429-90-5 | *************************************** | | _ - | | NR | | | 7429-90-5 | | | l—i- | | NR NR | | | | Antimony_
Arsenic | | - - | | NR
NR | | | 7440-38-2
7440-39-3 | Barium | | - - | | NR
NR | | | 7440-33-3 | Beryllium | | <u> - -</u> | | NR NR | | | 7440-43-9 | Cadmium | | - - | | NR NR | | | 7440-70-2 | Calcium | | - - | | NR NR | | | L | Chromium | | - - | | NR | | | | Cobalt | | - - | | NR | | | 7440-50-8 | | | - - | | NR | | | 7439-89-6 | Copper | | - - | | NR NR | | | 7439-92-1 | Lead | | - - | | NR | | _ | 7439-95-4 | Magnesium | | - - | | NR | | | 7439-96-5 | Manganese | | - - | | NR | | | 7439-97-6 | Mercury | 0.11 | - - | | CV | | | 7440-02-0 | Nickel - | | - - | | NR | | | 7440-02-0 | Potassium | | - - | | NR | | | 7782-49-2 | Selenium | [| - - | | NR | | | 7440-22-4 | Silver | | - - | | NR | | | | Sodium | | - - | | NR | | | 7440-28-0 | Thallium | [———— · | - | | NR | | | 7440-28-0 | Vanadium | | - - | | NR | | | 7440-66-6 | Zinc | | - - | | NR | | | 7440 00 0 | Cyanide | | - - | | NR | | | | | | | | | | lor Before: | | Clari | ty Before: | • | | Texture: | | lor After: | | Clari | ty After: | | | Artifacts: | | mments: | _ | | | | | | | | | | | | · | | | | | | · · · · · · · · · · · · · · · · · · · | | | | ### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Name: A | QUATEC | | Contract: 91 | 108 | 2 | K40253F | |------------|------------------------|-------------|-----------------|----------|--|-----------------| | | | | O SAS No.: | | | SDG No.: 40009 | | trix (soi | l/water): FIS | н_ | | La | b Sampl | e ID: 216204 | | vel (low/ | med): LOW | | | Da | te Rece | eived: 10/13/93 | | Solids: | 100 | .0 | | , | | | | | Concentratio | n Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | _ | | NR | | | 7440-36-0 | | | - | | NR NR | | | 7440-38-2 | | | - | | NR | | | 7440-39-3 | | | - | | NR | | | 7440-41-7 | | | - | | NR | | | 7440-43-9 | | | - | | NR | | | 7440-70-2 | | | - | | NR | | | 7440-47-3 | | | - | | NR | | | 7440-48-4 | | | - | | NR | | | 7440-50-8 | | | - | | NR | | | 7439-89-6 | · · · | | | | NR | | | 7439-92-1 | | | - | | NR | | | 7439-95-4 | | | - | | NR | | | 7439-96-5 | | | - | | NR | | | 7439-97-6 | | 0.10 | | ~ \ | CV | | | 7440-02-0 | | | - | Z_N | NR | | | 7440-02-0 | | | - | | NR | | | 1 | | | 1-1 | | NR | | | 7782-49-2 | 1 | | - | | NR NR | | | 7440-22-4 | | | _ | | | | | 7440-23-5
7440-28-0 | | | 1–1 | | NR | | | 7440-28-0 | | | II | | NR | | | 7440-62-2 | | | - | | NR
NR | | | /440-00-0 | | | — | | NR NR | | | | Cyanide | | - | | I NK | | lor Before | e: | Clari | ty Before: | ø. | ······································ | Texture: | | lor After: | | Clari | ty After: | | | Artifacts: | | mments: | | | <u> </u> | | • | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET | EPA SAMPLE NO | | |---------------|--| |---------------|--| | کت Name: AQUA | ATEC | | Contract: 91 | 1082 | ı
, | K40254F | |---------------|-------------|--------------|-----------------|--|--------|----------------| | | | | D_ SAS No.: | | | SDG No.: 40009 | | atrix (soil/v | | | | | | e ID: 216206 | | • | | _ | | | | | | evel (low/med | l): LOW_ | - | | Dat | e Rece | ived: 10/13/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | | · · | | | | - 1 | | | CAS No. | Analyte | Concentration | c | Q | М | | • | 7429-90-5 | Aluminum | | - - | · | NR | | | 7440-36-0 | Antimony | | - - | | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium | | - - | | NR | | | 7440-41-7 | Beryllium | | - - | | NR | | | 7440-43-9 | Cadmium | | {- - | | NR | | | 7440-70-2 | Calcium | | - - | | NR | | | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | Cobalt | | - - | | NR | | | 7440-50-8 | Copper | | - - | | NR | | | 7439-89-6 | Iron | | - - | | NR | | | 7439-92-1 | Lead | | - - | | NR | | <u>_</u> | 7439-95-4 | Magnesium | | - - | | NR | | | 7439-96-5 | Manganese | | - - | | NR | | | 7439-97-6 | Mercury | 0.13 | - - | | CV | | | 7440-02-0 | Nickel - | | - - | | NR | | | 7440-09-7 | Potassium | | - - | | NR | | • | 7782-49-2 | Selenium | | - - | | NR | | | 7440-22-4 | Silver | | - - | | NR | | | 7440-23-5 | Sodium | | (- | | NR | | | 7440-28-0 | Thallium | | - <i>-</i> | | NR | | | 7440-62-2 | Vanadium- | | - - | | NR | | | 7440-66-6 | Zinc | | - - | | NR | | | | Cyanide_ | | = = | | NR | | • | l | | | <u> </u> | l | | | olor Before: | | Clari | ty Before: | <i>(</i> i) | | Texture: | | olor After: | | Clari | ty After: | | | Artifacts: | | omments: | | | | | | | | | | | _ <u></u> | | | | | | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | L. Mame: AOUA | ATEC | | Contract: 9: | 1082 | K40255F | |----------------|------------------------|-----------------------|---------------------------------------|----------------|-----------------| | | | | | | SDG No.: 40009 | | Matrix (soil/w | _ | | | | le ID: 216208 | | , , | · | _ | | _ | | | Level (low/med | l): LOW_ | | | Date Rece | eived: 10/13/93 | | % Solids: | 100. | 0 | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y weight): | : MG/KG | | | CAS No. | Analyte | Concentration | c Q | м | | | 7429-90-5 | | | | NR | | | 7440-36-0 | Antimony_ | | | NR | | | 7440-38-2 | Arsenic_ | | | NR | | | 7440-39-3
7440-41-7 | Barium Beryllium | · · · · · · · · · · · · · · · · · · · | | NR
NR | | | 7440-43-9 | Cadmium | | | NR NR | | | 7440-70-2 | | | - | NR | | | 7440-47-3 | | | _ | NR | | | 7440-48-4 | | | _ | NR | | | 7440-50-8 | | | | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | | · | | NR | | | 7439-95-4
7439-96-5 | Manganese | | - | NR
NR | | | 7439-97-6 | Mercury_ | 0.28 | _ ZN | CV | | | 7440-02-0 | Nickel - | | - | NR | | | 7440-09-7 | Potassium | | | NR | | · | 7782-49-2 | Selenium_ | | | NR | | | 7440-22-4 | | | | NR | | | 7440-23-5 | Sodium | | _ | NR | | | 7440-28-0 | Thallium_
Vanadium | | | NR | | | 7440-62-2
7440-66-6 | Zinc | | - | NR
NR | | | 7440-00-0 | Cyanide | | | NR | | | | 0,440 | | - | *** | | | · | · ———— · | · · · · · · · · · · · · · · · · · · · | · - · · | · | | Color Before: | | Clarit | y Before: | <u></u> | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | | | | | | | | | | | | | | ~ | | | | | | | | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | dame: AQU | ATEC | | Contract: 9: | 1082 | | K40256F | |-----------------------|------------------------|----------------------|---------------------------------------|--------------------|-------------------|----------------| | Lab Code: AQU | AI Ca | se No.: BI | O SAS No.: | <u> </u> | - • | SDG No.: 40009 | | Matrix (soil/ | _ | | _ | | | ID: 216210 | | Level (low/med | WAI . P | _ | | Date | Recei | ved: 10/13/93 | | | _ | | | Date | Neces | 10/15/95 | | <pre>\$ Solids:</pre> | 100. | 0 | | | | | | Ce | oncentration | Units (ug | /L or mg/kg dry | y weig | ght): | MG/KG | | | CAS No. | Analyte | Concentration | c (| 2 M | | | | 7429-90-5 | Aluminum | | - | —— ₁₀ | ĪR | | | 7440-36-0 | Antimony_ | | - | | IR . | | | 7440-38-2 | Arsenic - | · · · · · · · · · · · · · · · · · · · | - | | IR | | | 7440-39-3 | Barium — | | - | | rr | | | 7440-41-7 | Beryllium | | | | TR | | | 7440-43-9 | Cadmium_ | | | | IR | | | 7440-70-2 | Calcium_ | | | | IR . | | | 7440-47-3 | Chromium_ | | | | TR | | | 7440-48-4 | Cobalt | | _ <u>_</u> | | IR | | | 7440-50-8 | Copper | | | | TR | | | 7439-89-6 | Iron | | - | | TR | | | 7439-92-1 | Lead | | - | | TR | | $\overline{}$ | 7439-95-4 | Magnesium | | - | | TR | | | 7439-96-5
7439-97-6 | Manganese
Mercury | 0.16 | - 31 | | IR
IV | | | 7440-02-0 | Nickel - | | - - - | | IR I | | | 7440-02-0 | Potassium | | - | | IR | | - | 7782-49-2 | Selenium | | - - | | iR | | | 7440-22-4 | Silver | | - - | | TR | | | 7440-23-5 | Sodium | | - | | IR | | | 7440-28-0 | Thallium | | - | | IR | | | 7440-62-2 | Vanadium - | | - | N | IR | | | 7440-66-6 | Zinc | | | | IR | | | | Cyanide | | - - | _N | IR | | Color
Before: | | Clarit | y Before: | _ |
T | !
Cexture: | | Color After: | | Clarit | y After: | | P | Artifacts: | | Comments: | | | | | | | | commencs: | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | سے Name: AQI | JATEC | TEC Contract: 91082 | | | | | | |--------------|---------------|-----------------------|-----------------|-------------|------------|----------|------------------------| | ab Code: AQU | AI_ Ca | se No.: BI | O SAS No.: | : _ | | SDG N | o.: 40009 __ | | atrix (soil/ | water): FISH | <u> </u> | | L | ab Samp | le ID: | 216212 | | evel (low/me | ed): LOW_ | | | Da | ate Rec | eived: | 10/13/93 | | Solids: | 100. | 0 | | | | | | | C | Concentration | Units (ug | /L or mg/kg dry | Y | weight) | : MG/KG | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | 7429-90-5 | A Trime i mira | | - | | NR | | | | 7440-36-0 | Antimony | | - | | NR NR | | | | 7440-38-2 | Arsenic _ | | – | | NR | | | | 7440-39-3 | Barium | | - | | NR | | | | 7440-41-7 | Beryllium | | - | | NR | | | | 7440-43-9 | Cadmium | | - | | NR | | | | 7440-70-2 | Calcium | | _ | | NR | | | | 7440-47-3 | Chromium | | | | NR | | | | 7440-48-4 | Cobalt | | _ | | NR | | | | 7440-50-8 | Copper | | _ | | NR | | | | 7439-89-6 | Iron | | _ | | NR | | | | 7439-92-1 | Lead | | _ | | NR | | | | | Magnesium | | - | | NR | | | | 7439-96-5 | Manganese | | _ | = 31 | NR | | | | | Mercury_ | 0.28 | _ | <u>Z</u> n | CV | | | | | Nickel | | _ | | NR
NR | | | | 7782-49-2 | Potassium
Selenium | | - | | NR NR | | | | 7440-22-4 | Selenium_
Silver | | _ | | NR | • | | | 7440-23-5 | Sodium | | - | | NR | | | | | Thallium | | - | | NR | | | | 7440-62-2 | Vanadium | | - | | NR | | | | 7440-66-6 | Zinc | | - | | NR | | | | | Cyanide | | - | | NR | | | | | | | _ | | | | | olor Before: | | Clarit | y Before: | a is | - | Textur | e: | | olor After: | | Clarit | y After: | | _ | Artifa | cts: | | omments: | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Ab Name: AQUATEC | F | K40276F | | | 082 | 10 | Contract: 9 | | | me: AOUATI | ab Na | |--|-------|-----------|----------|-----------|--------|-----------------|---------------------------------------|-------------|----------|------------|-------| | Cas No. Analyte Concentration C Q M | 40009 | DG No.: 4 | SI | | | | | | | | | | Cas No. | 14 | ID: 21621 | le J |
Sampl | lab S | L | | <u> </u> | r): FISH | (soil/wat | atrix | | CAS No. | 3/93 | ed: 10/13 | eive | Rece | Date 1 | D | | | LOW_ | (low/med): | evel | | CAS No. | | | | | | | | 0 | 100. | ds: | Soli | | T429-90-5 | | G/KG | : MC | ght): | weig | У | /L or mg/kg dry | Units (ug | ntration | Conc | | | 7440-36-0 Antimony 7440-38-2 Arsenic NR NR 7440-39-3 Barium NR NR NR 7440-41-7 Beryllium NR NR NR 7440-47-3 Cadmium NR NR 7440-47-3 Chromium NR 7440-50-8 Copper NR 7439-89-6 Iron NR 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7439-97-6 Mercury 0.25 NR 7440-02-0 Nickel NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-66-6 Zinc NR NR NR 7440-66-6 Zinc NR NR NR NR 7440-66-6 Zinc NR NR NR NR NR NR NR N | | | M | Q | Q | c | Concentration | Analyte | S No. | l c | | | 7440-36-0 Antimony 7440-38-2 Arsenic NR NR NR 7440-41-7 Beryllium NR NR NR NR NR NR NR N | | . | | | _ | _ | | | | | | | 7440-38-2 Arsenic | | | | | -] | - | | | | | | | T440-39-3 | | | | | - | - | | | | | | | 7440-41-7 7440-43-9 7440-47-2 Calcium 7440-47-3 Chromium 7440-50-8 Copper 7439-89-6 Iron 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7740-22-4 Silver 77440-23-5 Sodium 77440-28-0 Thallium 77440-66-6 Zinc | | | | | - | - | | | | 1 7 | | | 7440-43-9 Cadmium | | | | | - | - | | | | | | | 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-92-1 1cad 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc NR | | | | | - | - | | | | 7 | | | 7440-48-4 7440-50-8 7439-89-6 1ron 17439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-66-6 Thallium 7440-66-6 Zinc NR | | | | | - | - | | | | | | | 7440-50-8 7439-89-6 1ron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-66-6 Zinc NR | | | | | | | | | | | | | 7439-89-6 Iron Lead NR NR NR NR NR NR NR N | | | | | | | | | | B | | | 7439-92-1 Lead NR NR NR NR NR NR NR N | | | | | _ | _ | | | | | | | 7439-95-4 Magnesium 7439-96-5 Manganese 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc 7440-66-6 Zinc | | | | | - | _ | | | | | | | 7439-96-5 Manganese Mercury 0.25 NR CV 7440-02-0 Nickel NR 7440-09-7 Potassium NR NR 7782-49-2 Selenium NR 7440-23-5 Sodium NR 7440-28-0 Thallium NR 7440-66-6 Zinc NR | | | | | - | - | · · · · · · · · · · · · · · · · · · · | | | 1 | | | 7439-97-6 Mercury 0.25 N CV NR 7440-02-0 Nickel NR | | | | | - | - | | | | 1 | | | 7440-02-0 Nickel NR 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc NR | | | | | - | - | | | | | | | 7440-09-7 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc NR NR NR NR NR NR NR NR | | | | | -1-2-" | - | 0.25 | | | | | | 7782-49-2 Selenium | | | | | - | - | | | | | | | 7440-22-4 Silver NR NR NR NR NR NR NR | | | | | - | - | | | | | | | 7440-23-5 Sodium | | | | | - | 1- | | | | | | | 7440-28-0 Thallium NR NR NR NR NR NR | | | | | - | - | | | | | | | 7440-62-2 Vanadium | | | | | - | 1- | | | | | | | | | | | | | 1- | | Vanadium - | 10-62-2 | 7 | | | Cyanide | | | | | | | | | 10-66-6 | 7 | | | | | ٤ | NR | | -1 | | | Cyanide | | } | | | <u></u> | | _1 | I | 1 | _ | ۱_ | 1 | li | | اا | | | olor Before: Clarity Before: Texture: | | exture: | Te | | | & is | ty Before: | Clarit | | Before: _ | lor | | olor After: Clarity After: Artifacts: | | tifacts: | Art | | _ | | ty After: | Clarit | | After: _ | lor | | omments: | | | | | | | | | | ts: | mmen | ### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Code: AQUAI | √Name: AQ | UATEC | | Contract: 9 | 108 | 32 | K40277F | |--|------------|-------------|--------------|-----------------|------------|-------------|-----------------| | Date Received: 10/13 | | | | | | | SDG No.: 40009 | | Cas No. | rix (soil | /water): FI | SH_ | | La | ab Sampl | le ID: 216216 | | Cas No. | el (low/m | ed): LO | w | | Da | ate Rece | eived: 10/13/93 | | CAS No. | olids: | 10 | 0.0 | | | | | | T429-90-5 | • | Concentrati | on Units (ug | /L or mg/kg dry | y v | veight): | : MG/KG | | T440-36-0 | | CAS No. | Analyte | Concentration | С | Q | м | | T440-36-0 | | 7429-90- | 5 Aliminim | | - | | ND | | 7440-38-2 | | • | | | - | | · | | 7440-39-3 | | | 2 Arsenic | | - | | | | 7440-41-7 7440-43-9 7440-47-3 Cadmium 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Tron 7439-92-1 Lead Magnesium 7439-95-4 Magnesium 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7782-49-2 Selenium 7782-49-2 Sodium 77440-23-5 Sodium 77440-23-5 Thallium 77440-66-6 Zinc Cyanide Clarity Before: MR MR MR MR MR MR MR MR MR M | | | | | | | | | 7440-43-9 7440-70-2 7440-47-3 Chromium 7440-48-4 Cobalt 7440-50-8 Copper 7439-89-6 Tron 7439-92-1 Tron Tron Tron Tron Tron Tron Tron Tron | | | | | - | | | | 7440-70-2 | | | | | - | | | | 7440-47-3 | | | | | [- | | | | 7440-48-4 7440-50-8 7439-89-6 1ron 7439-92-1 Lead 7439-95-4 Magnesium MR 7439-96-5 Manganese Marcury Mercury Mickel MR 7440-02-0 Nickel MR 7440-02-1 Nickel MR NR | | - | | | - | | | | 7440-50-8 7439-89-6 1ron 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 7440-09-7 Potassium 7782-49-2 Selenium 7440-23-5 7440-28-0 Thallium 7440-66-6 Zinc Cyanide Copper Iron NR | | 1 | | | - | | | | 7439-89-6 | | | | | | | | | 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 7440-66-6 Cyanide Clarity Before: NR NR NR NR NR NR NR | | | | | - | | | | 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-66-6 Cyanide Rights and serious Manganese Mercury 0.10 TN TN TN TN TN TN TN TN TN T | | | | | | | | | 7439-96-5 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-66-6 7440-66-6 Cyanide 7440-66-5 7439-96-5 Manganese Mercury 0.10 NR | _ | | | | | | | | 7439-97-6 7440-02-0 7440-09-7 7782-49-2 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 Cyanide Clarity Before: | | 7439-96- | 5 Manganese | | - | | | | 7440-02-0 Nickel NR NR NR NR NR NR
NR N | | 7439-97- | 6 Mercury | 0.10 | - | N | | | 7782-49-2 Selenium NR NR NR NR NR NR NR N | | 7440-02-0 | Nickel - | | - | | NR | | 7440-22-4 7440-23-5 7440-28-0 7440-62-2 7440-66-6 Zinc Cyanide Clarity Before: Texture: | | 7440-09- | 7 Potassium | | - | | | | 7440-23-5 7440-28-0 7440-62-2 7440-66-6 Zinc Cyanide Clarity Before: Texture: | | 7782-49-3 | 2 Selenium | | - | | NR | | 7440-28-0 Thallium Vanadium Zinc NR NR NR Cyanide Cyanide Texture: | | 7440-22-4 | 4 Silver - | | - | | | | 7440-28-0 Thallium Vanadium 7440-62-2 Zinc NR NR NR Cyanide Clarity Before: Texture: | | 7440-23- | 5 Sodium | | - | | NR | | 7440-66-6 Zinc NR NR NR Cyanide Clarity Before: * Texture: | | 7440-28-0 | Thallium | | - | | | | Cyanide NR NR Clarity Before: Texture: | | 7440-62-2 | 2 Vanadium | | - | | NR | | lor Before: Clarity Before: Texture: | | 7440-66-6 | 5 Zinc | · C | - | | NR | | lor Before: Clarity Before: Texture: | | | Cyanide | | - | | NR | | | | | _ | | | | ll | | | or Before: | <u> </u> | Clarit | cy Before: | 6 6 | - | Texture: | | or After: Clarity After: Artifacts: | or After: | | Clarit | y After: | | _ | Artifacts: | | nments: | ments: | | | · | | | | | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | aw Name: AQUA | TEC | | Contract: 9 | 108 | 32 | K40278F | |---------------|--------------|-----------|-----------------|------------|------------|----------------| | | | | | | | SDG No.: 40009 | | trix (soil/w | vater): FISH | | | La | ab Sampl | e ID: 216218 | | vel (low/med | l): LOW_ | _ | | Da | ate Rece | ived: 10/13/93 | | Solids: | 100. | 0 | | , | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y v | weight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aliminim | | - | | NR | | | | Antimony | | - | | NR | | | | Arsenic | | - | | NR | | | 7440-39-3 | | | - | | NR | | | 7440-41-7 | | | - | | NR | | | | Cadmium | | - | | NR | | | 7440-70-2 | Calcium | | - | | NR | | | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | Cobalt | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | 1_ | | nr | | | 7439-92-1 | Lead | | | | NR | | / | 7439-95-4 | Magnesium | | | | NR | | | 7439-96-5 | Manganese | | _ | | NR | | | 7439-97-6 | | 0.27 | _ | <u>7</u> N | CV | | | | Nickel | | _ | | NR | | | 7440-09-7 | | | _ | | NR | | | | Selenium_ | | _ | | NR | | | 7440-22-4 | 1 | | _ | | NR | | | | Sodium | | _ | | NR | | | | Thallium | | - | II | NR NR | | | 7440-62-2 | Vanadium_ | | - | | NR
NR | | | 7440-66-6 | Zinc | | _ | ll | | | | | Cyanide | | <u> -</u> | | NR | | lor Before: | | Clari | ty Before: | 6. | | Texture: | | lor After: | | Clari | ty After: | | - | Artifacts: | | mments: | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUATEC | | | Contract: 9 | K40279F | | |---------------|--------------|------------|-----------------|----------------|---| | ab Code: AQU | AI_ Ca | se No.: BI | O SAS No. | SDG No.: 40009 | | | trix (soil/ | water): FISH | <u>-</u> | | Lab Sam | ple ID: 216220 | | vel (low/me | d): LOW_ | _ | | Date Re | eceived: 10/13/93 | | Solids: | 100. | 0 | | | | | С | oncentration | Units (ug | /L or mg/kg dry | y weight | :): MG/KG | | | CAS No. | Analyte | Concentration | C Q | М | | • | 7429-90-5 | Aluminum | ļ | | $- _{\overline{NR}} $ | | | 7440-36-0 | Antimony_ | | | $-\left \begin{array}{c} NR \\ NR \end{array} \right $ | | | 7440-38-2 | Arsenic | | - | $-\left \frac{NR}{NR} \right $ | | | 7440-38-2 | Barium | | - | $-\left \frac{NR}{NR} \right $ | | | 7440-39-3 | Beryllium | | - | $-\left \begin{array}{c} NR \\ NR \end{array} \right $ | | | 7440-43-9 | Cadmium | | - | $- _{NR}^{NR} $ | | | 7440-70-2 | Calcium | | - | - NR | | | 7440-47-3 | Chromium | | - | $- _{NR}^{NR} $ | | | 7440-48-4 | Cobalt | | - | $- _{NR}^{NR} $ | | | 7440-50-8 | | | | $- \mathbf{NR} $ | | | 7439-89-6 | Copper | | - | $- _{NR}^{NR} $ | | | 7439-92-1 | Lead | | - | $- _{NR}^{NR} $ | | | 7439-95-4 | Magnesium | | _ | - NR | | _ | 7439-96-5 | Manganese | | | - NR | | | 7439-96-6 | Mercury | 0.19 | - | - CV | | | 7440-02-0 | Nickel | | _ <u></u> n | - NR | | | | Potassium | | - | $-\left \frac{NR}{NR} \right $ | | | 7782-49-2 | Selenium | | - | $- \frac{NR}{NR} $ | | | 7440-22-4 | Silver | | - | - NR | | | 7440-23-5 | Sodium | | - | - NR | | | 7440-23-3 | Thallium | | - | - NR | | | 7440-28-0 | Vanadium_ | | - | $- \mathbf{NR} $ | | | 7440-62-2 | Zinc | | - | $-\left \frac{NR}{NR} \right $ | | | 7440-00-0 | Cyanide_ | | | NR NR | | lor Before: | | | l
ty Before: | | Marchana. | | | | | ty After: | | Artifacts: | | lor After: | | CIGIL | of wreer: | | ALCITACES. | | mments: | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ≻√name: AQUA | TEC | | Contract: 9: | 108: | 2 | K40280F | |--------------|-------------|-------------|-----------------|------------|-------------|-----------------| | o Code: AQUA | .I Ca | se No.: BI | O SAS No.: | : | | SDG No.: 40009 | | • | _ | | | | | | | trix (soil/w | ater): FISH | _ | | La | b Sampı | e ID: 216222 | | vel (low/med |): LOW_ | | | Da | te Rece | eived: 10/13/93 | | Solids: | 100. | 0 | | | | | | | | | | | | D. G. 189.0 | | Co | ncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | CAS No. | Analyte | Concentration | c | Q | M | | | | | | _ . | | | | | 7429-90-5 | Aluminum_ | | _ . | | NR | | | | Antimony_ | | _ . | | NR | | | | Arsenic_ | | _ . | | NR | | | 7440-39-3 | Barium | | _ . | | NR | | | 7440-41-7 | Beryllium | | _ . | | NR | | | 7440-43-9 | | | [_[. | | NR | | | | Calcium_ | | _ . | | NR | | | | Chromium | | | | NR | | | 7440-48-4 | | | | | NR | | | 7440-50-8 | Copper | | [| | NR | | | 7439-89-6 | Iron | | ۱_۱. | - | NR | | | 7439-92-1 | Lead | | - | | NR | | _ | 7439-95-4 | Magnesium | | ۱-۱. | | NR | | | | Manganese | | - - | | NR | | | | Mercury | 0.33 | - - | 7 N | CV | | | 7440-02-0 | Nickel | | - - | | NR | | | | Potassium | | - - | | NR | | • | 7782-49-2 | Selenium | | - - | | NR | | | | Silver | | - - | | NR | | | | Sodium | | - - | | NR | | | 7440-28-0 | | | - - | | NR | | | 7440-62-2 | Vanadium_ | | - - | [| NR | | | 7440-66-6 | Zinc | | - - | | NR | | | 7440 00 0 | Cyanide | | - - | | NR | | | | cyanide | | - - | | I I I | | or Before: | | Clarit | y Before: | ا ا
دان | | Texture: | | or After: | | | y After: | | | Artifacts: | | | | ~1~~ 1 · | | | | | | ments: | | | | | | | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | au Name: AQU | ATEC | | Contract: 9 | 108 | 2 | K40281F | |---------------|--------------|-----------|-----------------|------------|-------------|----------------| | | | | | | | SDG No.: 40009 | | trix (soil/ | water): FISH | I_ | | La | b Sampl | e ID: 216224 | | vel (low/me | d): LOW_ | _ | | Da | te Rece | ived: 10/13/93 | | Solids: | 100. | 0 | | | | | | С | oncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | | | - | | NR | | | 7440-38-2 | Arsenic | | 1-1 | | NR | | | 7440-39-3 | | | 1-1 | | NR | | | | Beryllium | ' | - | | NR | | | 7440-43-9 | Cadmium | | - | | NR | | | 7440-70-2 | Calcium | | 1-1 | | NR | | | 7440-47-3 | Chromium | | - | 1 | NR | | | 7440-48-4 | | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | 1-1 | | NR | | | | Lead | | 1-1 | | NR | | $\overline{}$ | • | Magnesium | | - | | NR | | | | Manganese | | 1-1 | | NR | | | 7439-97-6 | | 0.31 | 1-1 | <u>7n</u> | CV | | | | Nickel - | | - | ١ | NR | | | | Potassium | | - | | NR | | • | | Selenium | | 1-1 | | NR | | | | Silver | | 1-1 | | NR | | | | Sodium | | - | | NR | | | 7440-28-0 | | | - | | NR | | | | Vanadium_ | | | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | 1-1 | | NR | | | | | | | | | | or Before: | | Clarit | y Before: | • | • | Texture: | | or After: | | Clarit | y After: | <u>-</u> . | - | Artifacts: | | ments: | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO: | AD Name: AQU | ATEC | | Contract: 91 | 1082 | 2 | K40282F | |---------------|--------------|-----------|-----------------|-----------------|------------|-----------------| | | _ | | | | | SDG No.: 40009 | | | _ | | | | | _ | | Matrix (soil/ | water): FISH | _ | | Lal | o Sampl | le ID: 216226 | | evel (low/med | d): LOW_ | _ | | Dat | te Rece | eived: 10/13/93 | | Solids: | 100. | 0 | | | | | | | | | /T /3 3 | | | WC IVC | | Co | oncentration | onits (ug | /L or mg/kg dry | / WE | =1gnt): | mG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | | | NR | | | 7440-36-0 | Antimony_ | | | | NR | | | 7440-38-2 | Arsenic | | _ _ | | NR | | | 7440-39-3 | Barium | | | | NR | | | 7440-41-7 | Beryllium | | | | NR | | | | Cadmium | | _ _ | | NR | | | | Calcium_ | | _ - | | NR | | | | Chromium_ | | _ - | } | NR | | | | Cobalt | | _ - | | NR | | | | Copper | | _ _ | | NR | | | | Iron | | _ _ | | NR | | | | Lead | | _ - | | NR | | | | Magnesium | | _]_ | | NR | | | | Manganese | | _ _ | | NR | | | | Mercury_ | 0.13 | <u>`</u> | <u>7</u> N | CV | | | • - | Nickel | | _ - | | NR | | • | | Potassium | | _ - | | NR | | | | Selenium_ | | |] | NR | | | | Silver | | _ - | | NR | | | | Sodium | | _ - | | NR | | | | Thallium_ | | - - | | NR | | | 7440-62-2 | Vanadium_ | · | _ - | | NR | | | 7440-66-6 | Zinc | | - - | | NR | | | | Cyanide | | - - | | NR | | alam Rafawa. | ·i | | | ا ـــا ــ
مذ | | | | olor Before: | | | y Before: | | | Texture: | | olor After: | | Clarit | y After: | | | Artifacts: | | omments: | | | | | | | | <u> </u> | | | | | | | | · | | | | | | |
FORM I - IN #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: A | Contract: 91082 | | | K40287F | | | |------------|------------------------|------------|-----------------|---------|--------------|-----------------| | ab Code: A | AQUAI_ Ca | se No.: BI | SAS No.: | : _ | | SDG No.: 40009 | | atrix (soi | l/water): FISH | <u>.</u> | | Lā | ab Samp | le ID: 216228 | | evel (low/ | med): LOW_ | | | Da | ate Rec | eived: 10/14/93 | | Solids: | 100. | 0 | | | | | | | Concentration | Units (ug | /L or mg/kg dry | , v | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | • | 7440-36-0 | Antimony | | - | | NR | | | 7440-38-2 | Arsenic | | - | | NR | | | 7440-39-3 | Barium | | _ | | NR | | | 7440-41-7 | Beryllium | | | | NR | | | 7440-43-9 | Cadmium_ | | | | NR | | | 7440-70-2 | Calcium_ | | _ | | NR | | | 7440-47-3 | Chromium_ | | _ | | NR | | | | Cobalt | | _ | | NR | | | 7440-50-8 | Copper | | - | | NR
NR | | | 7439-89-6
7439-92-1 | Iron | | - | | NR | | | 7439-95-4 | Magnesium | | - | | NR | | | 7439-96-5 | Manganese | | - | | NR | | | 7439-97-6 | Mercury | 0.33 | - | <u>N</u> | CV | | | 7440-02-0 | Nickel'- | | - | <u> </u> | NR | | | 7440-09-7 | Potassium | | - | | NR | | | 7782-49-2 | Selenium | | - | | NR | | | 7440-22-4 | Silver - | | - | | NR | | | 7440-23-5 | Sodium | | _ | | NR | | | 7440-28-0 | Thallium | | - | | NR | | | 7440-62-2 | Vanadium_ | | - | | NR | | | 7440-66-6 | Zinc | | | | NR | | | | Cyanide | | | | NR | | lor Befor | e: | Clarit | y Before: | ai. | - | Texture: | | lor After | : | Clarit | y After: | | _ | Artifacts: | | mments: | | | | | | | | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | > Name: AQUA | TEC | | Contract: 91 | 1082 | 2 | K40288F | |----------------|-------------------------|------------------|-----------------|------------|-------------|-----------------| | ab Code: AQUA | I_ Ca | se No.: BI | SAS No.: | : _ | | SDG No.: 40009_ | | Matrix (soil/w | ater): FISH | _ | | Lal | b Sampl | e ID: 216230 | | Level (low/med |): LOW_ | - | | Dat | te Rece | ived: 10/14/93 | | Solids: | 100. | 0 . | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | eight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | | | - - | | NR | | | 7440-36-0 | Antimony_ | | | | NR | | | 7440-38-2
 7440-39-3 | Arsenic | | _ - | | NR
NR | | | 7440-39-3 | Beryllium | | - - | | NR | | | 7440-43-9 | Cadmium | | - - | | NR | | | 7440-70-2 | Calcium | | - - | | NR | | | 7440-47-3 | Chromium_ | | | | NR | | | 7440-48-4 | Cobalt | | | | NR | | | 7440-50-8 | Copper | | | | NR | | | 7439-89-6
7439-92-1 | Iron
Lead | | - - | | NR
NR | | | 7439-95-4 | Magnesium | | - - | | NR | | | 7439-96-5 | Manganese | | - - | | NR | | | | Mercury | 0.15 | | <u> </u> | CV | | | • | Nickel | | | | NR | | • | 7440-09-7 | Potassium | | _ - | | NR | | | 7782-49-2 | Selenium_ | | _ - | | NR | | | 7440-22-4
7440-23-5 | Silver
Sodium | | - | | NR
NR | | | 7440-28-0 | Thallium | | - - | | NR | | | 7440-62-2 | Vanadium | | - - | | NR | | | 7440-66-6 | Zinc - | | - - | | NR | | | | Cyanide | | | | NR | | | | | | l_l. | | 1 | | color Before: | | Clarit | ty Before: | S à | | Texture: | | Color After: | | Clari | ty After: | | | Artifacts: | | Comments: | | | | | | | | | | | | | | <u></u> | | | | <u>-</u> | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AOUA | TEC | | Contract: 91 | 1082 | | K40289F | |--------------|-------------|--------------|-----------------|-------------|---------------|-----------------| | | | | | | | SDG No.: 40009 | | trix (soil/w | ater): FISH | <u></u> | | Lab | Sampl | e ID: 216232 | | vel (low/med |): LOW_ | _ | | Dat | e Rece | eived: 10/14/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | | | | _ _ | | - | | | 7429-90-5 | Aluminum_ | | _ _ | | NR | | | 7440-36-0 | Antimony_ | | _ <u>_</u> | | NR | | | | Arsenic | | _ _ | | NR | | | | Barium | | _ _ | | NR | | | | Beryllium | | _ _ | | NR | | | | Cadmium_ | | _ _ | | NR | | | | Calcium_ | | _ _ | | NR | | | | Chromium_ | | l_l_ | | NR | | | 1 | Cobalt | | _ _ | | NR | | | | Copper | | | | NR | | | | Iron | | _ _ | | NR | | J | | Lead | | | | NR | | | 7439-95-4 | Magnesium | | | | NR | | | | Manganese | | - - | | NR | | | 7439-97-6 | Mercury | 0.10 | - - | N | cv | | | 7440-02-0 | Nickel - | | - - | | NR | | | 7440-09-7 | Potassium | | - - | | NR [| | | | Selenium | | - - | | NR | | | | Silver | | - - | | NR | | | | Sodium | | - - | | NR | | | | Thallium | | 1-1- | [| NR | | | 7440-62-2 | Vanadium | | - - | | NR | | | 7440-66-6 | Zinc | | - - | | NR | | |] | Cyanide | · | - - | | NR | | | | | | | | | | lor Before: | | Clarit | ty Before: | 6 5 | | Texture: | | lor After: | | Clarit | ty After: | | | Artifacts: | | mments: | | • | | | | | | | | | | | | | | | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | b Name: A | QUATEC | Contract: 91082 | | | K40290F | | |-----------|------------------------|-----------------|-----------------|----------------|---------|-----------------| | b Code: A | AQUAI_ Ca | se No.: BI | O SAS No.: | : _ | | SDG No.: 40009 | | trix (soi | il/water): FISH | I _ | | La | b Samp | le ID: 216234 | | vel (low/ | med): LOW_ | _ | | Da | te Rec | eived: 10/14/93 | | Solids: | 100. | 0 | | | | | | | Concentration | Units (ug | /L or mg/kg dry | y w | reight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | • | 7429-90-5 | Aliminim | <u> </u> | 1-1 | | NR | | | 7440-36-0 | | | - | | NR NR | | | | | | - | | NR NR | | | 7440-38-2
7440-39-3 | Barium | | | | NR NR | | | | | | - | | NR NR | | | 7440-41-7 | | I | - | | | | | 7440-43-9 | | | - | | NR NR | | | 7440-70-2 | | | _ | | NR | | | 7440-47-3 | | | _ | | NR | | | 7440-48-4 | | | _ | | NR | | | 7440-50-8 | · · · — | l | 1_1 | | NR | | | 7439-89-6 | Iron | | _ | | NR | | | 7439-92-1 | | | 1_1 | | NR | | | 7439-95-4 | | | 1_1 | | NR | | | 7439-96-5 | | | | | NR | | | 7439-97-6 | | 0.22 | - | <u></u> | CV | | | 7440-02-0 | Nickel | | - | | NR | | | 7440-09-7 | Potassium | | - | | NR | | | 7782-49-2 | Selenium | | - | | NR | | | 7440-22-4 | | | - | | NR | | | 7440-23-5 | | | - | | NR | | | 7440-28-0 | | | - | | NR | | | 7440-62-2 | Vanadium - | | - | | NR | | | 7440-66-6 | Zinc | - | - | | NR | | | | Cyanide | | - | | NR | | | | | | | | | | lor Befor | e: | Clari | ty Before: | & i | - | Texture: | | lor After | : | Clari | ty After: | | _ | Artifacts: | | mments: | ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Name: AQU | Contract: 91 | 1082 | | K40302F
SDG No.: 40009 | | | |---------------|--------------|-----------|-----------------|---------------------------|--------|----------------| | | | | O SAS No.: | | | | | | water): FISH | | | | | E ID: 216236 | | evel (low/med | d): Low_ | _ | | Date | Recei | ived: 10/14/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dry | y wei | ight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q I | 1 | | | 7429-90-5 | Aluminum | | _]_ | | NR I | | | | Antimony | | - | | IR | | | | Arsenic - | | - - | | TR | | | | Barium | | - | | VR . | | | | Beryllium | | - - | | VR | | | 7440-43-9 | Cadmium | | - - |]] | NR | | | 7440-70-2 | Calcium_ | | | | VR | | | | Chromium_ | | | | IR | | | | Cobalt | | | | TR | | | | Copper | | | | NR) | | | | Iron | | | | TR | | | | Lead | | | | ₹R | | _ | | Magnesium | | | | √R | | | 7439-96-5 | Manganese | | | | VR | | | | Mercury_ | 0.11 | | N(| <u>ev</u> | | | | Nickel | | _ _ | | VR | | • | | Potassium | | _ _ | | VR | | | | Selenium_ | | | | VR | | | 1 | Silver | | _ _ | | ₹R | | | | Sodium | · | _ _ | | VR | | | | Thallium_ | | - - | | VR | | | 7440-62-2 | Vanadium_ | | - | | NR I | | | 7440-66-6 | Zinc | | - - | | NR
NR | | | | Cyanitae | | _ _ | | | | lor Before: | | Clarit | y Before: | & | • | Texture: | | lor After: | | Clari | ty After: | | j | Artifacts: | | mments: | | | | | | | FORM I - IN ### MISCELLANEOUS PARAMETERS #### MISCELLANEOUS PARAMETERS | | | | Fillet | % Lipids | | | |-----------|------------------|--------|--------|----------|------|--| | Sample ID | Description | Sex | Weight | Fillet | Body | | | K40248 | Small Mouth Bass | female | 300g | 1.46 | 3.84 | | | K40249 | Small Mouth Bass | female | 185g | 1.06 | 3.70 | | | K40252 | Small Mouth Bass | male | 227g | 1.42 | 5.40 | | | K40253 | Small Mouth Bass | female | 247g | 1.44 | 3.60 | | | K40254 | Small Mouth Bass | male | 286g | 3.08 | 5.60 | | | K40255 | Small Mouth Bass | male | 331g | 0.84 | 4.50 | | | K40256 | Small Mouth Bass | male | 322g | 0.81 | 5.10 | | | K40257 | Small Mouth Bass | male | 161g | 0.51 | 1.70 | | | K40276 | Small Mouth Bass | female | 159g | 0.50 | 2.20 | | | K40277 | Small Mouth Bass | male | 204g | 0.69 | 3.40 | | | K40278 | Small Mouth Bass | female | 258g | 1.34 | 4.70 | | | K40279 | Small Mouth Bass | female | 225g | 0.51 | 1.50 | | | K40280 | Small Mouth Bass | male | 447g | 1.92 | 4.10 | | | K40281 | Small Mouth Bass | female | 302g | 1.42 | 5.30 | | | K40282 | Small Mouth Bass | male | 275g | 1.05 | 3.80 | | | K40287 | Small Mouth Bass | male | 273g | 0.26 | 2.93 | | | K40288 | Small Mouth Bass | male | 174g | 0.56 | 3.28 | | | K40289 | Small Mouth Bass | female | 144g | 0.50 | 2.91 | | | K40290 | Smail Mouth Bass | female | 220g | 0.74 | 3.93 | | | K40302 | Small Mouth Bass | male | 180g | 0.58 | 3.70 | | ### DATA REVIEW FOR # ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO
RIVER SUPERFUND SITE SDG# 40118 PCB, PESTICIDE AND MERCURY ANALYSES **BIOTA - FISH** Analyses performed by: Aquatec, inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York ### **Summary** The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40118 for the Biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and the corrected sample results. Analyses were performed on the following samples: | | | | | | Analy | rele : | |-----------|--------|---------|-------------|-----------------|-----------------|--------| | Sample ID | Lat ID | Species | Description | Sample Location | Peet/PCB/
Hg | %Lipid | | K40264W | 201022 | Sucker | whole body | Otsego City Dam | x | x | | K40265W | 201023 | Sucker | whole body | Otsego City Dam | x | x | | K40266W | 201024 | Sucker | whole body | Otsego City Dam | x | × | | K40267W | 201025 | Sucker | whole body | Otsego City Dam | × | x | | K40291W* | 201382 | Sucker | whole body | Otsego Dam | x | х | | K40292W | 201383 | Sucker | whole body | Otsego Dam | × | × | | K40293W | 201384 | Sucker | whole body | Otsego Dam | x | x | | K40294W | 201385 | Sucker | whole body | Otsego Dam | × | × | | K40295W | 201386 | Sucker | whole body | Otsego Dam | x | × | | K40296W | 201387 | Sucker | whole body | Otsego Dam | x | × | | K40297W | 201388 | Sucker | whole body | Otsego Dam | x | × | | K40298W | 201389 | Sucker | whole body | Otsego Dam | x | × | | K40299W | 201390 | Sucker | whole body | Otsego Dam | x | x | | K40300W | 201391 | Sucker | whole body | Otsego Dam | x | x | | K40301W | 201392 | Sucker | whole body | Otsego Dam | x | × | ^{*} MS/MSD/DUP performed on sample ### PCB ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. 'During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - -E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: #### Calibration The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for nonlinearity at the low end of the calibration curve. #### Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. #### Data Assessment ### 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time. ### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No Aroclors were detected in the method or instrument blanks. ### 3. System Performance The system performance was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. #### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for both surrogates in samples K40291W and K40292W. All data for these samples have been qualified as estimated. All other surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. #### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries and the relative percent difference between recoveries (RPD) were within acceptable control limits. All recoveries in the matrix spike blank were also within acceptable control limits. #### 8. System Performance and Overall Assessment * Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ### DATA REVIEW CHECKLIST ### PCB Data Review Checklist | | YES | NO | NA | |--|-----|-------------|----------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | x | | | | Are the samples numbers included in the narrative? | X | • | | | Are the sample chain-of-custodies present? | X | | | | Do the
chain-of-custodies indicate any problems with sample receipt or sample condition? | | x | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | · | | Are surrogate recovery forms present? | _ X | | | | Are all the samples listed on the appropriate surrogate recovery form? | x | | | | Are the outliers correctly marked with an asterisk? | X | | <u> </u> | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | x | | | | If yes, were the samples reanalyzed? | | × | | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | Χ | | | | Were matrix spikes analyzed at the required frequency? | x | | | | How many spike recoveries were outside of QC limits? | | | | | | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | | | | | Blanks | | | | | Is a Method Blank Summary Form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | X | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ### PCB Data Review Checklist - Page 2 | | YES | NO | NA | |---|-----|----------|-------------| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | <u>x</u> | | | Do any field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | x | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | X | | | | Aroclor 1221 | X | | | | Aroclor 1232 | | | | | Aroclor 1242 | X | | | | Aroclor 1248 | X | | | | Aroclor 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | X | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | x | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed? | X | | | | Are %D values for all compounds within limits (less than 15%)? | X | | | | Analytical Sequence Check | | | | | Is a analytical sequence form present and complete for each column and each period of analyses? | x | | | | Was the proper analytical sequence followed? | X | | | ### PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|----------|----------|-------------| | Cleanup Efficiency Verification | · — | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | <u>x</u> | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | X | | | | PCB Identification | | | | | Is both a combined and single column Aroclor Identification Report present for every sample? | X | | | | Do the combined column and individual column Aroclor identifications agree? | X | | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | × | | Compound Quantitation and Reported Detection Li | mits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | - | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | <u> </u> | | | Where field duplicates submitted with the samples? | | X | | ### PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding
Time | Surrogates | - Column 1 | Surrogates | - Column 2 | |------------|-----------------|---------------|------------|------------|------------| | | inie | TCX | DCB | TCX | DEB | | K40264W | OK for all | | | | | | K40265W | samples | | | | | | K40266W | | | | | | | K40267W | | | | | | | K40291W | | ↓ (42) | ↓ (54) | 1 (44) | ↓ (56) | | K40291WMS | | | | | | | K40291WMSD | | | | | | | K40292W | · | ↓ (45) | ↓ (56) | ↓ (47) | ↓ (58) | | K40293W | | | | | | | K40294W | | | | | | | K40295W | | | | | | | K40296W | | | | | | | K40297W | | | | | | | K40298W | | | | | | | K40299W | | | | | | | K40300W | | | | | | | K40301W | Surrogate Standards TCX Tetrachioro-m-xylene DCB Decachlorobiphenyl ### Qualifiers: D Surrogates diluted out Recovery high Recovery low Unless otherwise noted, all parameters are within specified limits. ### PCB Calibration Summary Instrument: <u>HP2618</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 5/19/94 1845 | 5/13 | 5/13 | 5/13 | 5/19 | 5/14 | 5/14 | |----------------------|--------------------|---------------------------------------|---------------|---------------|--------------|---------------|---------------| | Time: | to
5/11/94 1334 | 1059 | 1132 | 1811 | 1845 | 0123 | 0156 | | | initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont
Cali | Cont.
Cal. | Cent.
Cal. | | | *RSD | %D | X D | ×Đ | % D | % D | % D | | Aroclor 1016 | 4.6 / 4.6 | | 7.5 | | | | | | Arocior 1221 | 3.9 / 3.9 | | | | | | | | Aroclor 1232 | 3.2 / 3.7 | | | | | | _ | | Aroclor 1242 | 2.7 / 2.8 | | | | 0.0 | | | | Aroclor 1248 | 3.2 / 2.7 | 0.0 | | 0.5 | | 3.0 | | | Aroclor 1254 | 2.8 / 2.8 | | | | | | 1.0 | | Aroclor 1260 | 3.5 / 2.7 | · | | | | | | | Tetrachioro-m-xylene | 4.9 / 3.6 | | | | | | | | Decachlorobiphenyl | 8.6 / 9.2 | | | | | | | | Affected Samples: | | | | | | | | | | | | | | | | | | • | | | | | | | · · | | - | | | | | | | | | i | • | · | | a. | | ···· | | | | | , , , , , , , , , , , , , , , , , , , | | | | | | ### PCB Calibration Summary - Page 2 Instrument: <u>HP2618</u> Column: <u>RTX-35 / RTX-5</u> | Date: | | 5/14 | 5/14 | | | | | |----------------------|--------------|---------------|---------------|-------|---------------|------------|--------------| | Time: | | 0835 | 8090 | | | | | | | initial Cal. | Cont.
Cal. | Gord.
Carl | Cont. | Cont.
Cal. | Cont. | Cont.
Cal | | | ₩RSD | SD SD | SED. | %D | %D | X 0 | %D | | Aroclor 1016 | | | | | | | | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | | | | | | | Aroclor 1242 | | | | | | | | | Arocior 1248 | | 4.0 | | | | | | | Aroclor 1254 | | | | | | | | | Arocior 1260 | | | 0.5 | | | | | | Tetrachioro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | ļ | | | | | | | | | | | | | | | | | | ļ | ### CORRECTED ANALYSIS SUMMARY FORMS **EPA SAMPLE NO.** K40264W Lab Name: Aquatec, Inc. Lab Code: AQUAI SDG:_ 91082 Case: BIO 40118 Contract: Phase Type: _ **BIOTA** Lab Sample ID: 201022 Phase Weight: 10.0 (g) **Date Received:** 10/13/93 1.0 Injection Volume: (uL) Date Extracted: 04/14/94 Dilution Factor: 2.0 Date Analyzed: 05/13/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.82 | | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.92 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | | | | | | **EPA SAMPLE NO.** K40265W Lab Code: AQUAI Lab Name: Aquatec, Inc. 91082 Case: BIO SDG: 40118 Contract: Lab Sample ID: 201023 Phase Type: **BIOTA** 10/13/93 Phase Weight: 10.0 Date Received: **(g)** 1.0 04/14/94 Injection Volume: (uL) **Date Extracted:** 2.0 05/13/94 Dilution Factor: _ Date Analyzed: Sulfur Clean-up: Y (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Arocior-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 1.0 | | | 11097-69-1 | Aroclor-1254 | 0.81 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | EPA SAMPLE NO. K40266W Lab Name: Aquatec, Inc. Lab Code: **IAUDA** BIO SDG: 40118 Contract: 91082 Case: Lab Sample ID: Phase Type: **BIOTA** 201024 10.0 10/13/93 Date Received: Phase Weight: _ (g) Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 Dilution Factor: _ 1.0 Date Analyzed: 05/13/94 Sulfur Clean-up: (Y/N) Ν | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ٥ | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | Ū | | 53469-21-9 | Aroclor-1242 | 0.30 | | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.39 | | | 11096-82-5 | Aroclor-1260 | 0.050 | U | **EPA SAMPLE NO.** K40267W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 SDG: 40118 Contract: Case: BIO 201025 Phase Type: **BIOTA** Lab Sample ID: Phase Weight: 10.0 (g) Date Received: 10/13/93 Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 2.0 Dilution Factor: Date Analyzed: 05/13/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10
| U | | 53469-21-9 | Aroclor-1242 | 0.46 | | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.64 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | **EPA SAMPLE NO.** K40291W Lab Name: Aquatec, Inc. Lab Code: IAUDA 91082 BIO SDG: 40118 Contract: Case: 201382 Phase Type: **BIOTA** Lab Sample ID: Phase Weight: 10/14/93 10.0 (g) Date Received: Injection Volume: 1.0 Date Extracted: 04/14/94 (uL) 2.0 Dilution Factor: Date Analyzed: 05/13/94 Sulfur Clean-up: Ν (Y/N) | 0.10
0.10 | <u>U.T</u> | |--------------|----------------------| | 0.10 | UJ | | | | | 0.10 | UJ | | 0.10 | UJ | | 0.90 | 5 | | 0.56 | す | | 0.10 | 03 | | | 0.10
0.90
0.56 | EPA SAMPLE NO. K40292W Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40118 **BIOTA** Lab Sample ID: 201383 Phase Type: _ Phase Weight: 10.0 Date Received: 10/14/93 **(g)** Injection Volume: _ 1.0 (uL) Date Extracted: 04/14/94 Dilution Factor: 2.0 Date Analyzed: 05/13/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u>a</u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.10 | U 7 | | 11104-28-2 | Aroclor-1221 | 0.10 | N 2 | | 11141-16-5 | Aroclor-1232 | 0.10 | UJ | | 53469-21-9 | Aroclor-1242 | 0.10 | บป | | 12672-29-6 | Aroclor-1248 | 0.95 | <u> </u> | | 11097-69-1 | Aroclor-1254 | 0.56 | | | 11096-82-5 | Aroclor-1260 | 0.10 | UJ | **EPA SAMPLE NO.** K40293W Lab Name: Aquatec, Inc. Lab Code: AQUAI SDG: ___ 40118 Contract: _ 91082 Case: BIO Phase Type: _ **BIOTA** Lab Sample ID: 201384 Phase Weight: __ 10.0 **Date Received:** 10/14/93 (g) Injection Volume: 1.0 Date Extracted: 04/14/94 (uL) Dilution Factor: 5.0 Date Analyzed: 05/13/94 Sulfur Clean-up: N (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | u | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Arocior-1232 | 0.25 | U | | 53469-21-9 | Arocior-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 1.7 | | | 11097-69-1 | Aroclor-1254 | 0.87 | | | 11096-82-5 | Aroclor-1260 | 0.25 | | EPA SAMPLE NO. K40294W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** SDG: 40118 Contract: 91082 Case: BIO Phase Type: __ **BIOTA** Lab Sample ID: 201385 Phase Weight: __ 10.0 Date Received: 10/14/93 **(g)** Injection Volume: __ 1.0 (uL) Date Extracted: 04/14/94 Dilution Factor: 2.0 Date Analyzed: 05/13/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |-------------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | Ų | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 1.2 | | | 12672-29-6 | Aroclor-1248 | 0.10 | Ų | | 11097-69-1 Aroclor-1254 | 1.3 | | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | **EPA SAMPLE NO.** K40295W Lab Name: Aquatec, Inc. Lab Code: IAUDA Contract: 91082 Case: BIO SDG: 40118 Phase Type: **BIOTA** Lab Sample ID: 201386 Phase Weight: 10.0 (g) **Date Received:** 10/14/93 Injection Volume: Date Extracted: 1.0 (uL) 04/14/94 2.0 Dilution Factor: Date Analyzed: 05/13/94 (Y/N) Sulfur Clean-up: Ν | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |-------------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | υ | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 1.3 | | | 11097-69-1 Aroclor-1254 | Aroclor-1254 | 0.75 | | | 11096-82-5 | Aroclor-1260 | 0.19 | | EPA SAMPLE NO. K40296W Lab Code: Lab Name: Aquatec, Inc. **AQUAI** 91082 Case: BIO SDG: ___ 40118 Contract: Phase Type: **BIOTA** Lab Sample ID: 201387 Phase Weight: 10.0 (g) **Date Received:** 10/14/93 Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 Dilution Factor: __ 2.0 Date Analyzed: 05/14/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.85 | | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.0 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | | | |) | | **EPA SAMPLE NO.** K40297W Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 BIO 40118 Contract: Case: SDG: Phase Type: **BIOTA** Lab Sample ID: 201388 10.0 Phase Weight: Date Received: (g) 10/14/93 Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 Dilution Factor: 2.0 Date Analyzed: 05/14/94 Sulfur Clean-up: Ν (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|-------------------------|-----------------------|----| | 12674-11-2 | Aroclor-1016 | 0.10 | _L | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | Ĺ | | 53469-21-9 | Aroclor-1242 | 0.10 | l | | 12672-29-6 | Aroclor-1248 | 1.3 | | | 11097-69-1 | Aroclor-1254 | 0.83 | | | 11096-82-5 | 11096-82-5 Aroclor-1260 | 0.10 | Ĺ | EPA SAMPLE NO. K40298W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** Contract: 91082 Case: BIO SDG: 40118 Phase Type: **BIOTA** Lab Sample ID: 201389 Phase Weight: 10.0 **Date Received:** 10/14/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 2.0 Dilution Factor: _ Date Analyzed: 05/14/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.87 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Arocior-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.1 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | EPA SAMPLE NO. K40299W Lab Code: IAUDA Lab Name: Aquatec, Inc. 40118 BIO SDG: 91082 Case: Contract: **BIOTA** Lab Sample ID: 201390 Phase Type: Phase Weight: _ 10.0 **(g) Date Received:** 10/14/93 Injection Volume: _ (uL) 1.0 Date Extracted: 04/14/94 Dilution Factor: 2.0 Date Analyzed: 05/14/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 1.1 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.5 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | **EPA SAMPLE NO.** K40300W Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 BIO SDG: 40118 Contract: Case: Lab Sample ID: Phase Type: **BIOTA** 201391 Phase Weight: 10.0 Date Received: 10/14/93 **(g)** 1.0 Injection Volume: Date Extracted: 04/14/94 (uL) Dilution Factor: _ 2.0 05/14/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.86 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | υ | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.2 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | **EPA SAMPLE NO.** K40301W Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIQ SDG: __ <u>40</u>118 Lab Sample ID: Phase Type: **BIOTA** 201392 Phase Weight: 10.0 (g) Date Received: 10/14/93 Injection Volume: 1.0 (uL) **Date Extracted:** 04/14/94 Dilution Factor: _ 2.0 Date Analyzed: 05/14/94 Sulfur Clean-up: Υ (Y/N) | CAS NO. COMPOUND | COMPOUND | CONCENTRATION | | |------------------|--------------|---------------|----------| | | | (mg/Kg) | <u> </u> | | 12674-11-2 | Arocior-1016 | 0.87 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | υ | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.6 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | ### PESTICIDE ANALYSES #### **Introduction** Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values
should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### **Data Assessment** ### 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. No deviations from this holding time were noted. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. ### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. ### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for both surrogates in sample K40291W. All data for this sample have been qualified as estimated. All other surrogate recoveries were within acceptable control limits. ### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40264W | gamma-Chlordane
trans-Nonachlor
4,4'-DDE
4,4'-DDT | 125.0%
351.5%
40.2%
311.8% | |---------|---|---| | K40265W | Aldrin
gamma-Chlordane
4,4'-DDE
4,4'-DDD
4,4'-DDT | 37.4%
120.4%
44.0%
31.8%
508.0% | | K40266W | Aldrin
gamma-Chlordane
4,4'-DDE | 34.4%
74.6%
36.4% | | K40267W | gamma-Chlordane
4,4'-DDE | 114.7%
58.9% | | K40291W | Aldrin
gamma-Chlordane
4,4'-DDE
Dieldrin
4,4'-DDT | 30.0%
174.4%
39.5%
* 89.2%
383.3% | | K40292W | gamma-Chlordane
4,4'-DDE
Dieldrin
4,4'-DDT | 155.4%
39.9%
60.6%
347.8% | | K40293W | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
Dieldrin
4,4'-DDT | 26.6%
157.3%
362.8%
29.7%
48.6%
308.5% | |---------|--|--| | K40294W | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
Dieldrin
4,4'-DDT | 29.2%
148.7%
325.0%
26.9%
56.4%
333.6% | | K40295W | Aldrin Heptachlor Epoxide gamma-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDT | 29.3%
62.4%
162.8%
376.6%
33.2%
88.1%
414.9% | | K40296W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
Dieldrin
4,4'-DDT | 33.3%
74.1%
169.6%
30.9%
89.9%
325.6% | | K40297W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
Dieldrin
4,4'-DDT | 25.7%
31.3%
166.0%
32.8%
57.4%
319.5% | | K40298W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
Dieldrin
4,4'-DDT | 33.7%
46.3%
145.3%
38.9%
404.4%
432.2% | | K40299W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 33.0%
345.1%
144.1%
34.4%
409.3% | | K40300W | Aldrin | 42.5% | |---------|--------------------|--------| | | Heptachlor Epoxide | 29.3% | | | gamma-Chlordane | 139.9% | | | trans-Nonachlor | 369.4% | | | 4,4'-DDT | 356.8% | | K40301W | Aldrin | 38.8% | | | Heptachlor Epoxide | 97.1% | | | gamma-Chlordane | 171.7% | | | 4,4'-DDE | 30.2% | | | 4,4'-DDT | 420.3% | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. ### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. Recoveries of Aldrin were above the acceptable control limit in the matrix spike and matrix spike duplicate samples. Recoveries of Dieldrin and 4,4'-DDT were also slightly above the control limit. The high recoveries can be attributed to positive interference from the sample matrix. Recoveries were within acceptable control limits for the matrix spike blank (MSB) sample. No qualifiers were added to the samples based on matrix spike performance. ### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. **Data Validation Checksheets** ### Pesticide Data Validation Checklist | | YES | NO | NA | |--|----------|----|----| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the samples numbers included in the narrative? | x | | | | Are the sample chain-of-custodies present? | x | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are the surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | <u> </u> | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | × | | | | If yes, were the samples reanalyzed? | | X | | | Were the method blanks reanalyzed? | | | X | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | | | 5 out of8 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | <u>0</u> out of <u>4</u> | | | | | Blanks | | | | | is the method blank summary form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | × | | | ### Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA | |--|-------------|---------------|----| | ls the chromatographic performance acceptable for each instrument? | X | | | | Do any method/reagent/instrument blanks have positive results? | | x | | | Do any trip/field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts preblanks, and MS/MSD? | sent for | all samples, | | | peak resolution check | X | | | | performance evaluation mixtures (BCS) | X | | | | Toxaphene multipoint calibration | X | | | | Pesticide/PBB multipoint calibration | X | | | | Pesticide/PBB mid-point standard | X | | | | instrument blanks | X | | | | Are Forms VI 1-4 present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | X | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | X | | | | Is Form VII-1 present for each BCS analyzed for both columns? | x | <u>-</u> | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | X | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | X | | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | × | | | | Are RPD values for all compounds < 25%? | × | | | | Analytical Sequence Check | | - | | | is Form VIII present and complete for each column and each period of analyses? | x | | | | | | | | ### Pesticide/PCB Data Validation Checklist - Page 3 | | YES | NO | NA | |---|----------|----------|---| | Was the proper analytical sequence followed? | <u>X</u> | | | | Cleanup Efficiency Verification | | | | | Is Form IX-1 present for each lot of Florisil cartridges used? | <u> </u> | | | | Are all samples listed on the form? | <u> </u> | | | | If GPC cleanup was performed, is Form IX-2
present? | | | Х | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits for: | | | | | Florisil cartridge check (80-120%) | X | | | | GPC calibration (80-110%) | | | X | | Pesticide/PBB Identification | - | | | | Is a Form X present for every sample in which a pesticide or PCB was detected? | <u> </u> | | | | Was GC/MS confirmation provided when required? | | | X | | Is the percent difference (%D) calculated for the positive sample results on the two columns less than 25%? | | X | | | Were there any false negatives? | | X | | | Compound Quantitation and Reported Detection Limit | 8 | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | X | | | | Chromatogram Quality | | | | | Were the baselines stable? | X | | *************************************** | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | <u> </u> | | ### Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample: ID: | Holding | Surrogates - Column 1 | | Surrogates - Column 2 | | |-------------|------------|-----------------------|--------|-----------------------|--------| | | Time | TCX | OCB | TCX | DCB | | K4026 | ok for all | | | | | | K402854W | samples | | | | | | K402864W | | | - | | | | K402674W | | | | | | | K40291W | | | | | | | K40291W | | ļ (53) | ↓ (52) | ↓ (50) | J (51) | | K40291WMS | | | | | | | K40291WMSD | | | | | | | K40292W | | | . " | | - | | K40293W | | | | | | | K40294W | | | | | | | K40295W | | | | | | | K40296W | | | | | | | K40297W | | | | | | | K40298W | | | | | | | K40299W | | | | | | | K40300W | | | | | | | K40301W | | | | | | Surrogates: TCX Tetrachioro-m-xylene DCB Decachiorobiphenyl Qualifiers: D Surrogate diluted out Recovery high Recovery low Unless otherwise noted, all samples are within specified limits. ### Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/17/94 | 5/23 | 5/23 | 5/24 | 5/24 | | | |-----------------------------|--------------|-------|---------------|---------------|---------------|----------|------------| | Time: | 17;19 | 05:11 | 18:22 | <i>D</i> 0:41 | 89;01 | | | | | initial | Cont. | Cont.
Cal. | Cont. | Cont.
Cal. | Cont. | Cont. | | v. | Cat.
%RSD | %D | WD | Cal.
%D | XD | Cal: | Cel.
%D | | 2-Bromobiphenyl | ok | ok | ok | ок | ок | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | - | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | · | | | | <u> </u> | | | 4,4'-DDT | | | | | | | Ĺ | | Hexabromobiphenyl
(BP-6) | | - | | | | | | | Toxaphene | | | | | | <u> </u> | | | Tetrachloro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | <u> </u> | | | <u> </u> | | | Affected Samples: | | _ | ſ | | | | 1 | | 1 | | ### Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/17/94 | 5/23 | 5/23 | 5/24 | 5/24 | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|--------------| | Time: | 17:19 | 05:11 | 16:22 | 00:41 | 09:01 | | | | , | initial
Cal. | Cont.
Cal: | Gont.
Cal. | Cont.
Gal. | Cont.
Cal. | Cont.
Cal. | Cent
Cal. | | | %RSD | % D | %D | % D | %8 | %D | % D | | 2-Bromobiphenyl | ok | ok | ok | ok | ok | ļ | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | · | | | | Hexachiorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chiordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | <u>-</u> | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | <u> </u> | | Tetrachioro-m-xylene | | 7. | | | s i | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | <u> </u> | Γ | | | | | | | | Corrected Sample Analysis Data Sheets Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40264W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201022 Date Received: 10/13/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |---|--|--|--------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.038 | | | | 1024-57-3 | Heptachlor Epoxide | 0.032 | | _ | | 5103-74-2 | gamma-Chlordene- | 0.012 | | ·K | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | • | | 39765 80 5 | trans Nonachler | 0.0068 | | R | | 72-55-9 | 4,4'-DDE | 0.043 | J | • | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.017 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | Ü | _ | | 50-29-3 | 4,4'-DDT | 0.017 | | K | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | ı | | 72-54-8
5103-73-1
50-29-3
36355-01-8 | Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | 0.010
0.017
0.0050
0.017
0.020 | U
U | -F | Soxhlet 1.0 **Dilution Factor:** Client ID No. Lab Name: Aquatec, Inc. K40265W Lab Code: AQUAI 91082 Contract: BIO SDG: Case: 40118 201023 Lab Sample ID: 10/13/93 Phase Type: **Biota Date Received:** Phase Weight: 10.0 **Date Extracted:** 04/14/94 **Extraction:** 05/23/94 Date Analyzed: Sulfur Clean-up: | COMPOUND | CONCENTRATION (mg/Kg) | a | | |--------------------|---|--
---| | 2-Bromobiphenyl | 0.010 | U | | | 3-Bromobiphenyl | 0.010 | U | | | 4-Bromobiphenyl | 0.010 | U | | | Hexachlorobenzene | 0.0050 | U | | | gamma-BHC | 0.0050 | U | | | Aldrin | 0.034 | J | | | Heptachlor Epoxide | 0.026 | | | | gemme Chlordane | 0.011 | | R | | alpha-Chlordane | 0.0058 | | • | | trans-Nonachlor | 0.0050 | U | | | 4,4'-DDE | 0.030 | 7 | | | Dieldrin | 0.010 | U | | | 4,4'-DDD | 0.011, | J | | | cis-Nonachlor | 0.0050 | U | | | 4,4' DDT | -0.011 | | R | | Hexabromobiphenyl | 0.020 | U | ' | | Toxaphene | 0.20 | U | | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma-Chlordane alpha-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | Comp/Kg | Comp/Kg) | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201024 Date Received: 10/13/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N Client ID No. K40266W 40118 | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | |------------|--------------------|--------------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.015 | 7 | | 1024-57-3 | Heptachlor Epoxide | 0.012 | | | 5103-74-2 | gamma-Chlordane | 0.0059 | JN | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.014 | J | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.01Q | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40267W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201025 Date Received: 10/13/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N |
 | | | | |------------|--------------------|-----------------------|---| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.023 | | | 1024-57-3 | Heptachlor Epoxide | 0.019 | | | 5103 74 2 | gemma Chiordane | 0.0075 | | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | υ | | 72-55-9 | 4,4'-DDE | 0.020 | d | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40291W 40118 N Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet 1.0 Dilution Factor: Lab Sample ID: 201382 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 SDG: Sulfur Clean-up: CAS NO. COMPOUND CONCENTRATION Q (mg/Kg) 2052-07-5 2-Bromobiphenyl ロゴ 0.010 3-Bromobiphenyl 2113-57-7 0.010 UJ 92-66-0 ひゴ 4-Bromobiphenyl 0.010 Hexachlorobenzene 118-74-1 0.0050 ロブ gamma-BHC 58-89-9 0.0050 UJ 309-00-2 Aldrin 0.037 J 1024-57-3 Heptachlor Epoxide 0.032 R 5103-74-2 gamma-Chlordane 0.0090 5103-71-9 alpha-Chiordane 0.0050 UJ 39765-80-5 trans-Nonachior 0.0050 ひて 72-55-9 4,4'-DDE 0.030 Dieldrin 0.012 60-57-1 \overline{JN} 72-54-8 4,4'-DDD 0.010 UI 5103-73-1 cis-Nonachlor 0.0050 ログ R 50-29-3 4,4'-DDT 0.011 36355-01-8 Hexabromobiphenyl 0.020 UJ 8001-35-2 Toxaphene 0.20 UJ Lab Name: Aquatec, Inc. K40292W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40118 Lab Sample ID: 201383 Phase Type: Biota Date Received: 10/14/93 Client ID No. | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | |------------------|---------|------------------|----------| | Extraction: | Soxhlet | Date Analyzed: | 05/23/94 | | Phase Weight: | 10.0 g | Date Extracted: | 04/14/94 | | Phase Type: | Biota | Date Received: | 10/14/93 | | | | Lau Sample ID. | 201303 | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |--------------------|--------------------|-----------------------|----|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | 1 | | 58-89-9 | gamma-BHC | 0.0050 | U | 1 | | 309-00-2 | Aldrin | 0.047 | | 1 | | 1024-57-3 | Heptachlor Epoxide | 0.044 | | | | 5103 74 2 | gamma-Chlordane | 0.012 | | R | | 5103-71-9 | alpha-Chiordane | 0.0050 | U | 1 | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | 1 | | 72-55-9 | 4,4'-DDE | 0.045 | 7 |] | | 60-57-1 | Dieldrin | 0.013 | NE | 1 | | 72-54-8 | 4,4'-DDD | 0.018, | | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50 29 3 | 4,4' DDT | 0.016 | | IR | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1`` | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. K40264W Lab Code: AQUAI SDG: 40118 Case: BIO SDG: 40118 Lab Sample ID: 201022 201022 thase Type: Biota Date Received: 10/13/93 Client ID No. | | | Lab Sample ID. | 201022 | |------------------|---------|------------------|----------| | Phase Type: | Biota | Date Received: | 10/13/93 | | Phase Weight: | 10.0 g | Date Extracted: | 04/14/94 | | Extraction: | Soxhlet | Date Analyzed: | 05/23/94 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | | | | | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | | |---|------------|--------------------|--------------------------|---|----| | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | Г | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | | 309-00-2 | Aldrin | 0.038 | | | | | 1024-57-3 | Heptachlor Epoxide | 0.032 | | _ | | | 5103-74-2 | gamma-Chlordane | 0.012 | | R | | | 5103-71-9 | alpha-Chlordane | 0.0050 | υ | • | | F | 39765 80 5 | trans-Nonachler | 0.0068 | | R | | Г | 72-55-9 | 4,4'-DDE | 0.043 | J | • | | Г | 60-57-1 | Dieldrin | 0.010 | U | | | Г | 72-54-8 | 4,4'-DDD | 0.017, | | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | _ | | | 50-29-3 | 4,4'-DDT | 0.017 | | K. | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | • | | Г | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40265W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201023 Date Received: 10/13/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |--------------------|---|---
--| | 2-Bromobiphenyl | 0.010 | U | | | 3-Bromobiphenyl | 0.010 | U | | | 4-Bromobiphenyl | 0.010 | U | | | Hexachlorobenzene | 0.0050 | U | | | gamma-BHC | 0.0050 | U | | | Aldrin | 0.034 | J | | | Heptachlor Epoxide | 0.026 | | | | gamma Chlordane | 0.011 | | R | | alpha-Chlordane | 0.0058 | | ` | | trans-Nonachlor | 0.0050 | U | | | 4,4'-DDE | 0.030 | 7 | | | Dieldrin | 0.010 | U | | | 4,4'-DDD | 0.011 | J | | | cis-Nonachlor | 0.0050 | U | | | 4,4' DDT | 0.011 | | LR. | | Hexabromobiphenyl | 0.020 | U | • | | Toxaphene | 0.20 | U | | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gemma Chlordane alpha-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | 2-Bromobiphenyl 0.010 3-Bromobiphenyl 0.010 4-Bromobiphenyl 0.010 Hexachlorobenzene 0.0050 gamma-BHC 0.0050 Aldrin 0.034 Heptachlor Epoxide 0.026 gamma-Ghlordane 0.011 alpha-Chlordane 0.0058 trans-Nonachlor 0.0050 4,4'-DDE 0.030 Dieldrin 0.010 4,4'-DDD 0.011 cis-Nonachlor 0.0050 4,4'-DDT 0.0050 4,4'-DDT 0.0050 | Comp/Kg | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40266W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201024 Date Received: 10/13/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | |------------|--------------------|--------------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.015 | 6 | | 1024-57-3 | Heptachlor Epoxide | 0.012 | | | 5103-74-2 | gamma-Chlordane | 0.0059 | 77 | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.014 | Ü | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010. | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40267W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201025 Date Received: 10/13/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |--------------------------|--------------------|-----------------------|---|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.023 | | i | | 1024-57-3 | Heptachlor Epoxide | 0.019 | | i | | - 5103 74 2 - | gamma Chlordane | 0.0075 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | , | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | ĺ | | 72-55-9 | 4,4'-DDE | 0.020 | 4 | l | | 60-57-1 | Dieldrin | 0.010 | υ | l | | 72-54-8 | 4,4'-DDD | 0.010 | U | • | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50-29-3 | 4,4'-DDT | 0.010 | U | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40291W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201382 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N | CAS | S NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | | |------|--------|--------------------|--------------------------|--------|---| | 205 | 2-07-5 | 2-Bromobiphenyl | 0.010 | UJ | | | 2113 | 3-57-7 | 3-Bromobiphenyl | 0.010 | UJ | | | 92- | -66-0 | 4-Bromobiphenyl | 0.010 | υJ | | | 118 | I-74-1 | Hexachlorobenzene | 0.0050 | UJ | | | 58- | 89-9 | gamma-BHC | 0.0050 | UJ | | | 309 | -00-2 | Aldrin | 0.037 | 7 | ı | | 1024 | 4-57-3 | Heptachlor Epoxide | 0.032 | 4 | | | 510 | 3-74-2 | gamma-Chlordane | 0.0090 | | R | | 5103 | 3-71-9 | alpha-Chlordane | 0.0050 | UJ | | | 3976 | 5-80-5 | trans-Nonachlor | 0.0050 | υJ | | | 72- | 55-9 | 4,4'-DDE | 0.030 | 7 | | | 60- | 57-1 | Dieldrin | 0.012 | ZN | | | 72- | -54-8 | 4,4'-DDD | 0.010 | UT | | | 5103 | 3-73-1 | cis-Nonachlor | 0.0050 | ひし | | | 50- | 29-3 | 4,4'-DDT | 0.011 | | R | | 3635 | 5-01-8 | Hexabromobiphenyl | 0.020 | ر
ط | | | 800 | 1-35-2 | Toxaphene | 0.20 | UF | } | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO 1.0 Client ID No. K40292W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet **Dilution Factor:** Lab Sample ID: 201383 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N | | | | _ | |--------------------|---|--
--| | COMPOUND | CONCENTRATION (mg/Kg) | a | | | 2-Bromobiphenyl | 0.010 | υ | | | 3-Bromobiphenyi | 0.010 | U | 1 | | 4-Bromobiphenyl | 0.010 | U | į | | Hexachlorobenzene | 0.0050 | U | | | gamma-BHC | 0.0050 | U | 1 | | Aldrin | 0.047 | | 1 | | Heptachlor Epoxide | 0.044 | | 1_ | | gamma Chlordane | 0.012 | | R | | alpha-Chlordane | 0.0050 | U | ľ | | trans-Nonachlor | 0.0050 | U | 1 | | 4,4'-DDE | 0.045 | য | 1 | | Dieldrin | 0.013 | JN | } | | 4,4'-DDD | 0.019, | |] | | cis-Nonachlor | 0.0050 | U |] | | 4,4' DDT | 0.016 | | 7R | | Hexabromobiphenyl | 0.020 | U | 1'' | | Toxaphene | 0.20 | U | 7 | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma Ghlordane alpha-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | Comp/Kg | Comp/Kg | Lab Name: Aquatec, Inc. K40293W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40118 Lab Sample ID: 201384 Thase Type: Riota Date Received: 10/14/93 Client ID No. Phase Type: **Biota Date Received:** 10/14/93 04/14/94 Phase Weight: 10.0 Date Extracted: Extraction: 05/23/94 Soxhlet Date Analyzed: Dilution Factor: 1.0 Sulfur Clean-up: N | | | | | _ | |----------------------|--------------------|-----------------------|---|-----------------------| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | 1 | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | Ü | 7 | | 92-66-0 | 4-Bromobiphenyl | 0.010 | Ü | 7 | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | 7 | | 58-89-9 | gamma-BHC | 0.0050 | U | 7 | | 309-00-2 | Aldrin | 0.054 | J | 7 | | 1024-57-3 | Heptachlor Epoxide | 0.046 | | 7 | | 5103 74 2 | gamma Chlordane | 0.015 | | $\exists R$ | | 5103-71-9 | alpha-Chlordane | 0.0050 | Ū | ٦'' | | 39765-80-5 | trans Nonachior | 0.0086 | | $\exists \mathcal{R}$ | | 72-55-9 | 4,4'-DDE | 0.064 | 7 | ٦`` | | 60-57-1 | Dieldrin | 0.017 | | 7 | | 72-54-8 | 4,4'-DDD | 0.027 | | 7 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 7 | | 50-29-3 | 4,4' DDT | 0.024 | | $\exists R$ | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | ٦٠ | | 8001-35-2 | Toxaphene | 0.20 | U | 7 | | | | | | _ | Lab Name: Aquatec, Inc. K40294W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40118 Lab Sample ID: 201385 thase Type: Biota Date Received: 10/14/93 Client ID No. | | | rap Sample in: | | |------------------|---------|------------------|---------| | Phase Type: | Biota | Date Received: | 10/14/9 | | Phase Weight: | 10.0 g | Date Extracted: | 04/14/9 | | Extraction: | Soxhlet | Date Analyzed: | 05/23/9 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | | | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|----|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | İ | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.053 | 7 | l | | 1024-57-3 | Heptachlor Epoxide | 0.044 | | | | 5103-74-2 | gamma Chlordano | 0.016 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | ` | | 39765-80-5 | trans-Nonachler | 0.0096 | | R | | 72-55-9 | 4,4'-DDE | 0.070 | J | ` | | 60-57-1 | Dieldrin | 0.017 | 77 | ŀ | | 72-54-8 | 4,4'-DDD | 0.030 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50-29-3 | 4,4'-DDT | 0.023 | | 1R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | | | | | | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201386 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/23/94 Sulfur Clean-up: N Client ID No. K40295W 40118 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|----|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | ł | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | υ | ĺ | | 58-89-9 | gamma-BHC | 0.0050 | U | İ | | 309-00-2 | Aldrin | 0.050 | 7 | | | 1024-57-3 | Heptachlor Epoxide | 0.045 | JN | | | 5103 74 2 | gamma Chlordane | 0.014 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765 80 5 | trans Nonachior | 0.0077 | | IR | | 72-55-9 | 4,4'-DDE | 0.056 | J | 1, | | 60-57-1 | Dieldrin | 0.013 | JN | 1 | | 72-54-8 | 4,4'-DDD | 0.022 | | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50 29 3 | 4,4' DDT | 0.018 | | IR. | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO 1.0 Phase Type: Extraction: Dilution Factor: Phase Weight: Client ID No. K40296W 40118 Biota 10.0 g Soxhlet Lab Sample ID: 201387 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Applying the Control of o SDG: Date Analyzed: _ Sulfur Clean-up: 05/23/94 N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |--------------------|--------------------|-----------------------|----|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | 92-66-0 | 4-Bromobiphenyi | 0.010 | U | 1 | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | 1 | | 58-89-9 | gamma-BHC | 0.0050 | U | 1 | | 309-00-2 | Aldrin | 0.045 | 7 | 1 | | 1024-57-3 | Heptachlor Epoxide | 0.042 | JN | 1 | | 5103-74-2 | gamma-Chlordane | 0.013 | | k | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | T | | 39765-80-5 | trans-Nonachior | 0.0050 | U | 1 | | 72-55-9 | 4,4'-DDE | 0.056 | J | 1 | | 60-57-1 | Dieldrin | 0.012 | JN | 1 | | 72-54-8 | 4,4'-DDD | 0.021 | | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50 29 3 | 4,4' DDT | 0.018 | | 4 | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | 8001-35-2 | Toxaphene | 0.20 | U | 7 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO K40297W Client ID No. SDG: 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201388 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|----------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | . 0.0050 | U | ŀ | | 309-00-2 | Aldrin | 0.053 | J | | | 1024-57-3 | Heptachlor Epoxide | 0.048 | C | | | 5103-74-2 | gamma-Chlordane | 0.014 | | IR | | 5103-71-9 | alpha-Chiordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.059 | 7 | | | 60-57-1 | Dieldrin | 0.015 | JN | | | 72-54-8 | 4,4'-DDD | 0.025 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50 29 3 | 4,4' DDT | 0.020 | | IR | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 ` | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40118 Lab Sample ID: 201389 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201389 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N Client ID No. | | | | | _ | |------------|--------------------|-----------------------|---|----------------| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | 1 | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | 1 | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | 1 | | 58-89-9 | gamma-BHC | 0.0050 | U | 1 | | 309-00-2 | Aldrin | 0.053 | J |] | | 1024-57-3 | Heptachlor Epoxide | 0.048 | 3 | 1 | | 5103-74-2 | gemma Chlordene | 0.016 | | 1R | | 5103-71-9 |
alpha-Chlordane | 0.0050 | U |] ` | | 39765-80-5 | trans-Nonachlor | 0.0050 | U |] | | 72-55-9 | 4,4'-DDE | 0.055 | フ |] | | 60 57 1 | - Dieldrin | 0.014 | |] R | | 72-54-8 | 4,4'-DDD | 0.021 | | 7 `` | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 _ | | 50-29-3 | 4,4' DDT | 0.018 | | 7R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | Ü |] ` | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40299W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201390 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.055 | J | | | 1024-57-3 | Heptachler Epoxide | 0.057 | | R | | 5103-74-2 | gamma Chlordano | 0.017 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.066 | 7 | | | 60-57-1 | Dieldrin | 0.010 | U | l | | 72-54-8 | 4,4'-DDD | 0.020 | | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50 20 3 | 4,4' DDT | 0.023 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 `` | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40300W 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201391 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|--------------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | | | | | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.045 | 5 | | | 1024-57-3 | Heptachlor Epoxide | 0.044 | 4 | | | 5103-74-2 | gamma Chlordane | 0.015 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | • | | 39765-80-5 | trans Nonschlor | 0.0085 | | R | | 72-55-9 | 4,4'-DDE | 0.069 | | ' ` | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.026 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50 29 3 | 4,4' DDT | 0.021 | | .R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40301W SDG: 40118 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201392 Date Received: 10/14/93 Date Extracted: 04/14/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N | | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | a | | |---|--------------------|--------------------|--------------------------|---|---| | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | ! | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | Γ | 58-89-9 | gamma-BHC | 0.0050 | U | | | | 309-00-2 | Aldrin | 0.058 | J | | | F | 1024 57 3 | Heptachlor Epoxide | 0.058 | | R | | F | 5103-74-2 | gamma-Chlordane | 0.018 | | R | | | 5103-71-9 | alpha-Chlordane | 0.0093 | | • | | Γ | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | Γ | 72-55-9 | 4,4'-DDE | 0.080 | 4 | | | Γ | 60-57-1 | Dieldrin | 0.010 | υ | | | | 72-54-8 | 4,4'-DDD | 0.024 | | | | Γ | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | | 50 29 3 | 4,4'-DDT | 0.027 | | R | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | | 8001-35-2 | Toxaphene | 0.20 | Ü |] | | | | | | | | ### MERCURY ANALYSES #### Introduction Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: ### Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). ### Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - Duplicate analysis not within control limits. - + Correlation coefficient for MSA is less than 0.995. ### Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### **Data Assessment** ### 1. Holding Time The recommended holding times for mercury analyses is 28 days from tissue homogenization. All samples were analyzed within this holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. #### 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. #### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. #### 3.3 CRDL Standard All CRDL standard recoveries were within acceptable limits. #### 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. #### 4.1 Matrix spike Recovery for the matrix spike was within acceptable limits. ### 4.2 Laboratory Duplicate The difference between laboratory duplicates was within acceptable limits. ### 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. #### 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. #### 7. Furnace QC No furnace analyses were performed. ### 8. Method of Standard Additions (MSA) No MSA were performed. ### 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. **Data Validation Checksheets** ### Inorganic Data Validation Checklist | | YES | NO | NA_ | |--|----------|-------------|-----| | Data Completeness and Deliverables | | , | | | Is there a narrative or cover letter present? | X | | | | Are the sample numbers included in the narrative? | <u></u> | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X . | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | X | | | | Sample No.? | <u> </u> | | | | SDG No.? | <u> </u> | | | | Correct units? | X | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | Is the distillation log for mercury present? | X | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP | | | X | | Flame AA | | |
X | | Furnace AA | | | X | | Mercury | × | | | | Cyanides | | | X | | Is the data legible? | X | | | | Is the data properly labeled? | <u> </u> | | | | Holding Times | | | | | Were mercury analyses performed within 28 days? | X | | · | | | | | | | | YES | NO | NA_ | |---|----------|-------------|-----| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | | | Are all forms complete? | <u> </u> | | | | Are correct units indicated on Form I's? | X | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | X | | | | Was a brief physical description of samples given on Form I's? | | X | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | | | X | | is a record of 5 point calibration present for Hg analysis? | X | | | | Is a record of 4 point calibration present for: | | | | | Flame AA? | | | X | | Furnace AA? | | | X | | Cyanides? | | | X | | Is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | X | | Is correlation coefficient less than .995 for: | | | | | Mercury Analysis? | X | | | | Cyanide Analysis? | | | X | | Atomic Absorption Analysis? | | | X | | Form II A (Initial and Continuing Calibration Verifica | tion) | | | | Present and complete for every metal and cyanide? | X | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | X | | Hg (80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | Х | | | YES | NO | NA | |--|-----|----|----------| | Was continuing calibration performed every 10 samples or every 2 hours? | × | | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | X | | Was a mid-range calibration verification standard distilled and analyzed for cyanide analysis? | | | × | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | X | | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | X | | Form III (Initial and Continuing Calibration Blanks) | | | | | Present and complete? | X | | | | Was an initial calibration blank analyzed? | X | | | | Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)? | X | | - | | Are all calibration blanks (when IDL <crdl) (crdls)?<="" contract="" detection="" equal="" less="" limits="" or="" required="" td="" than="" the="" to=""><td>X</td><td></td><td></td></crdl)> | X | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | × | | Form III (Preparation Blank) | | | <u> </u> | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | X | | | | each batch of digested samples? | X | | | | each matrix type? | X | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | X | · | | | YES | NO | NA | |--|------------|---------|-----| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | × . | | Is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | X | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | | | , | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | X | | Are all Interference Check Sample results inside the control limits (±20%)? | | | X | | If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | X | | Form V A (Spiked Sample Recovery - Pre-Digestion/I | Pre-Distil | lation) | | | Present and complete for: | | | | | each SDG? | X | | | | each matrix type? | X | <u></u> | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | X | | | | If no, is sample concentration greater than or equal to four times spike concentration? | | | X | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | | | X | | Are any spike recoveries: | | | | | less than 10%? | | X | | | between 10-74%? | | X | | | between 126-200%? | | X | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | | | | Present and complete for: | | | | | each SDG? | X | | | | | YES | NO | NA | |---|-----|----|-------------| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | X | | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | X | | | | If no, are all results outside the control limits flagged with an * on Form I's and VI? | | | X | | is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | | × | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | X | | | Form VII (Laboratory Control Sample) | | - | <u> </u> | | Was one LCS prepared and analyzed for: | | | | | each SDG? | X | | | | each batch samples digested/distilled? | X | | \ <u></u> | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | Is LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | X | | each matrix type? | | | × | | Was field blank(s) used for Serial Dilution Analysis? | | | × | | Are results outside control limit flagged with an "E"" on Form I's and Form IX when initial concentration on Form IX is equal to 50 times IDL or greater. | | | × | | Are any % difference values: | | | | | > 10%? | | _ | . X | | ≥100%? | | | × | | Furnace Atomic Absorption (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | X | | | | | | | | YES | NO | NA | |--|----------|--|----| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | | | X | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X | | Is analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | | | | Present? | | X | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | X | | Was MSA required for any sample but not performed? | | X | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | | X | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | X | | Field Blank | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | X | | Form X, XI, XII (Verification of Instrumental Paramet | ers) | , | - | | Is verification report present for: | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation Factors (annually)? | | | X | | ICP Linear Ranges (quarterly)? | | | X | | Form X (Instrument Detection Limits) | | | | | Are IDLs present for: | | | | | all the analytes? | X | | | | all the instruments used? | <u> </u> | | | | | YES | NO | NA | |---|-----|----|----| | Is IDL greater than CRDL for any analyte? | | X | | | If yes, is the concentration of Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than 5 x IDL. | | | × | | Was any sample result higher linear range of ICP. | | | X | | Was any sample result higher than the highest calibration standard for non-ICP parameters? | | X | | | If yes for any of the above, was the sample diluted to obtain the result on Form I? | | | X | Corrected Sample Analysis Data Sheets ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | INORGANIC ANALYSES DATA | SHEET | | |--------------------------------------|---------------------------------------|------------|-----------------| | ಹಿಂದ Name: AQUATEC | Contract: 9 | 1082 | K40264W | | | | | | | Lab Code: AQUAI_ C | ase No.: BIO SAS No. | : | SDG No.: 40118_ | | Matrix (soil/water): FIS | н_ | Lab Sample | e ID: 201022 | | Level (low/med): LOW | | Date Rece | ived:
10/13/93 | | <pre>\$ solids:</pre> <pre>100</pre> | .0 | | | | Concentratio | n Units (ug/L or mg/kg dr | y weight): | MG/KG | | CAS No. | Analyte Concentration | | м | | 7429-90-5 | Aluminum | - ; | NR | | 7440-36-0 | Antimony | | NR | | 7440-38-2 | | | NR | | 7440-39-3
7440-41-7 | | | NR
NR | | 7440-41-7 | Cadmium | | NR NR | | 7440-70-2 | | | NR | | 7440-47-3 | | | NR | | 7440-48-4 | | | NR | | 7440-50-8 | | | NR | | 7439-89-6 | | | NR | | 7439-92-1 | · | J _ I I | NR | | 7439-95-4 | · · · · · · · · · · · · · · · · · · · | | NR | | 7439-96-5
 7439-97-6 | | | NR CV | | 7440-02-0 | | | NR | | 7440-09-7 | | | NR | | 7782-49-2 | | | NR | | 7440-22-4 | Silver | | NR | | 7440-23-5 | | | NR | | 7440-28-0 | | | NR | | 7440-62-2
7440-66-6 | | | NR | | /440-66-6 | ZincCyanide | | NR
NR | | | cyaniue | - | | | Color Before: | Clarity Before: | # | '
Texture: | | Color After: | Clarity After: | ···· | Artifacts: | | Comments: | | | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INORGANIC . | ANALYSES DATA S | SHEET | | |----------------|------------------------|----------------|-----------------|-----------|-----------------| | Lao Name: AQUA | TEC | | Contract: 91 | 1082 | K40265W | | | | | | | | | Lab Code: AQUA | I_ Ca | se No.: BI | O SAS NO. | | SDG No.: 40118_ | | Matrix (soil/w | ater): FISH | | | Lab Samp | le ID: 201023 | | Level (low/med | _ | _ | | Date Rec | eived: 10/13/93 | | % Solids: | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | | | - | NR | | | 7440-36-0 | Antimony_ | | | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium | | | NR | | | 7440-41-7 | | | | NR | | | 7440-43-9 | | | | NR | | | 7440-70-2 | | | _ | NR | | | 7440-47-3 | Chromium_ | | | NR | | | 7440-48-4 | Cobalt | | | NR | | | 7440-50-8 | Copper | | _ | NR | | | 7439-89-6 | Iron | | - | NR | | | 7439-92-1 | Lead | | - | NR | | | 7439-95-4 | Magnesium | | | NR | | | 7439-96-5 | Manganese | | - | NR | | | 7439-97-6 | Mercury_ | 0.02 | | CV | | | 7440-02-0 | Nickel | | | NR | | | 7440-09-7 | Potassium | | - | NR | | , | 7782-49-2 | Selenium_ | | | NR | | | 7440-22-4 | Silver | | | NR | | | 7440-23-5
7440-28-0 | SodiumThallium | | [-[| NR
NR | | | 7440-28-0 | | | - | NR | | | 7440-66-6 | Zinc | | - | NR | | | 7440 00-0 | | | - | NR | | | | Cyanide | | - | | | Color Before: | | Clarit | ty Before: | <u> </u> | Texture: | | Color After: | | Clarit | ty After: | | Artifacts: | | Comments: | | | | | | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Matrix (soil/water): FISH_ Lab Sample ID: 20 Level (low/med): LOW_ Date Received: 10 Solids: 100.0 | . – ––– | |--|----------| | Lab Code: AQUAI_ Case No.: BIO_ SAS No.: SDG No. Matrix (soil/water): FISH_ Lab Sample ID: 20 Level (low/med): LOW_ Date Received: 10 Level Solids: 100.0 | 266W | | Level (low/med): LOW Date Received: 10% Solids: 100.0 | : 40118_ | | Solids: 100.0 | 1024 | | |)/13/93 | | | | | Concentration Units (ug/L or mg/kg dry weight): MG/KG | | | CAS No. Analyte Concentration C Q M | | | T429-90-5 | | | Color Before: Clarity Before: Texture: | | | Color After: Clarity After: Artifact | ts: | | Comments: | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ∴ Name: AQUA | TEC | | Contract: 91 | 108 | 2 | K40267W | |--------------|------------------------|----------------------|-----------------|--|--------|-------------------------------| | b Code: AQUA | .I Ca | se No.: BI | O SAS No.: | : | | SDG No.: 40118 | | trix (soil/w | _ | | | | | ole ID: 201025 | | vel (low/med | l): LOW_ | | | Da | te Rec | eived: 10/13/93 | | Solids: | 100. | 0 | | | | | | | | | /L or mg/kg dry | , w | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | 7429-90-5 | Aluminum | | - | | $\left \frac{1}{NR} \right $ | | | | Antimony - | | -1 | | NR | | | | Arsenic | | | | NR | | | | Barium_ | | | | NR | | | | Beryllium | | _ | | NR | | | 7440-43-9
7440-70-2 | Cadmium_
 Calcium | | _ | | NR
NR | | | 7440-70-2 | Chromium | | - | | NR NR | | | 7440-48-4 | Cobalt | | - | | NR | | | 7440-50-8 | Copper_ | | - | | NR | | | 7439-89-6 | Iron | | -1 | | NR | | | 7439-92-1 | Lead | | - | | NR | | | 1 | Magnesium | - | - | | NR | | _ | | Manganese | | -1 | | NR | | | 7439-97-6 | Mercury | 0.02 | -1 | | cv | | | 7440-02-0 | Nickel | | - | | NR | | | 7440-09-7 | Potassium | | | | NR | | • | | Selenium_ | | | | NR | | | | Silver | | | | NR | | | | Sodium | | _ | | NR | | | | Thallium_ | | _ | | NR | | | 7440-62-2 | Vanadium_ | | _ | | NR | | | 7440-66-6 | Zinc | | -1 | | NR | | | | Cyanide | | -1 | | NR | | | l | | | - I | | .ll | | lor Before: | | Clarit | ty Before: | <u>. </u> | • | Texture: | | lor After: | | Clarit | ty After: | | - | Artifacts: | | mments: | | | | | | | | | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Na کمت | me: AQUA | TEC | | Contract: 91 | L082_ | | K40291W | |--------|----------|--|-------------------|-----------------|--------|--------|----------------| | | | | | | | | SDG No.: 40118 | | | | ater): FISH | | | | | e ID: 201382 | | Level | (low/med |): LOW | - | | Date | e Rece | ived: 10/14/93 | | | • | _ | - | | | | , , , , , | | Soli | .as: | 100. | D | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | we: | ight): | MG/KG | | | | CAS No. | Analyte | Concentration | С | Q | M | | | | 7429-90-5 | Aluminum | | _ _ | | $\frac{1}{NR}$ | | • | | 7440-36-0 | Antimony | | - - | | NR | | | | 7440-38-2 | Arsenic - | | - | | NR | | | | 7440-39-3 | Barium — | | - - | | NR | | | | 7440-41-7 | Beryllium | | -1- | | NR | | | | 7440-43-9 | | | - - | | NR | | | | 7440-70-2 | Calcium | | _ _ | | NR | | | | 7440-47-3 | | | _ _ | | NR | | | | 7440-48-4 | Cobalt | | | | NR | | | | 7440-50-8 | Copper | | | | NR | | | | 7439-89-6 | Iron | | | | NR | | | | | Lead | | | | NR | | _ | • | | Magnesium | | _ _ | | NR | | | • | | Manganese | | _] | | NR | | | | 7439-97-6 | Mercury_ | 0.03 | _ _ | | CV | | | | | Nickel | | | | NR | | | | | Potassium | | | | NR | | | | | Selenium_ | | _ _ | | NR | | | | | Silver | | _ _ | | NR | | | | | Sodium | | _ _ | | NR | | | | | Thallium_ | | _ - | | NR | | | | | Vanadium_
Zinc | | | | NR
NR | | | | 7440-66-6 | Cvanide | | - - | | NR NR | | | | ļ | cyanitde | | - - | [| NK | | olor | Before: | | Clarit | ty Before: |
 i | · | Texture: | | olor | After: | | | ty After: | | | Artifacts: | | ommen | | | | | | | | | | | ······································ | · | | | | | | | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Name: AOU | ATEC | | Contract: 91 | 108 | 2 | K40292W | |---------------|--------------|-----------|---------------------------------------|-----|-------------|-----------------| | | | | | | | SDG No.: 40118 | | atrix (soil/ | _ | | | | | le ID: 201383 | | evel (low/med | i): LOW_ | _ | | Da | te Rec | eived: 10/14/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y w | eight): | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony | | - - | | NR | | | 7440-38-2 | Arsenic - | | - | | NR | | | 7440-39-3 | Barium | | - | | NR | | | 7440-41-7 | Beryllium | | - | | NR | | | 7440-43-9 | Cadmium | | - | | NR | | | 7440-70-2 | Calcium | | - | | NR | | | _ | Chromium | | - | ······ | NR | | | | Cobalt - | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | - | | NR | | | 7439-92-1 | Lead | | - | | NR | | _ | | Magnesium | | - | | NR | | | | Manganese | | - | | NR | | | | Mercury | 0.03 | - | | CV | | | | Nickel - | | - | | NR | | | | Potassium | | - | | NR | | | | Selenium | · · · · · · · · · · · · · · · · · · · | - | | NR | | | | Silver | | - | | NR | | | | Sodium | | - | | NR | | | | Thallium | | - | | NR | | | 7440-62-2 | Vanadium_ | | | | NR | | | 7440-66-6 | Zinc | | | | NR | | | | Cyanide | | | | NR | | olor Before: | | Clarit | y Before: | | | Texture: | | olor After: | | Clarit | y After: | | | Artifacts: | | mments: | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | → Name: AQUA | TEC | | Contract: 91 | 108 | 32 | K40293W | |--------------|------------------------|-------------------|-----------------|------------|----------|----------------| | | | | | | | SDG No.: 40118 | | trix (soil/w | | | | _ | | e ID: 201384 | | vel (low/med |): LOW | | | Da | ate Rece | ived: 10/14/93 | | • | _ | _ | | | | 20020 20/21/00 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y v | veight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | · | - | | NR NR | | | | Antimony | | - | | NR | | | 7440-38-2 | Arsenic - | | _ | | NR | | | 7440-39-3 | Barium | | _ | | NR | | | | Beryllium | | | | nr | | | 7440-43-9 | | | | | NR | | | | Calcium_ | | | | NR | | | 7440-47-3 | Chromium_ | | _ | | NR | | | 7440-48-4 | | | _ | | NR | | | 7440-50-8 | Copper | | _ | | NR | | | 7439-89-6 | Iron | | - | | NR | | | | Lead | | - | | NR | | | 7439-95-4 | | | [-] | | NR
NR | | | 7439-96-5
7439-97-6 | | 0.03 | - | | CV | | | 7440-02-0 | Mercury
Nickel | | - | | NR | | | 7440-02-0 | | | - | | NR | | | 7782-49-2 | | | - | | NR | | | 7440-22-4 | | | - | | NR | | | | Sodium | · | - | | NR | | | | Thallium | | - | | NR | | | 7440-62-2 | Vanadium | | - | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | - | | NR | | | | | | _ | | | |
lor Before: | | Clarit | cy Before: | 6 5 | - | Texture: | | lor After: | | Clarit | ty After: | | - | Artifacts: | | mments: | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | | INONOMITE A | | | | | |---------------|-----------|------------------------|------------------|-----------------|------|--------------|-----------------| | Lab Na | ame: AQUA | TEC | | Contract: 9: | 108 | 32 | K40294W | | | | | | | | | SDG No.: 40118 | | Matri: | x (soil/w | ater): FISH | - | | La | ab Samp | le ID: 201385 | | Level | (low/med |): LOW_ | | • | Da | ate Rec | eived: 10/14/93 | | % Sol: | ids: | 100. | 0 | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y v | veight) | : MG/KG | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | 7429-90-5 | Aluminum | | _ | | NR | | | | 7440-36-0 | Antimony | | - | | NR | | | | 7440-38-2 | Arsenic - | | - | | NR | | | | 7440-39-3 | Barium | | | | NR | | | | 7440-41-7 | Beryllium | | _ | | NR | | | | 7440-43-9 | Cadmium_ | | _ | | NR | | | | 7440-70-2
7440-47-3 | Calcium Chromium | | - | | NR
NR | | | | | Cobalt | | - | | NR NR | | | | 7440-50-8 | Copper | | - | | NR | | | | 7439-89-6 | Iron | | - | | NR | | | | 7439-92-1 | Lead | | - | | NR | | $\overline{}$ | | | Magnesium | | - | | NR | | | | | Manganese | | | | NR | | | | | Mercury | 0.03 | | | CV | | | | | Nickel | | _ | | NR | | | • | | Potassium | | _ | | NR | | | | 7782-49-2 | Selenium_ | | | | NR | | | | | Silver | | - | | NR
NR | | | | | Thallium | | - | | NR NR | | | | 7440-62-2 | Vanadium | | - | | NR | | | | 7440-66-6 | Zinc | | - | | NR | | | | | Cyanide_ | | - | | NR | | Color | Before: | | Clarit | y Before: |
 | · | Texture: | | Color | After: | | Clarit | y After: | | - | Artifacts: | | Commer | nts: | | | | | | | # INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|---------|-----| | | 74020EW | | | ib Name: AQU | ATEC | | Contract: 91 | 108 | 2 | K40295W | |--------------|--------------|----------------|-----------------|----------|--------|------------------| | | | | | | | SDG No.: 40118 | | trix (soil/ | water): FISH | _ | | La | b Samp | ole ID: 201386 | | vel (low/me | d): LOW_ | _ | | Da | te Rec | ceived: 10/14/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dry | 7 W | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | | | | | Antimony | [| - | | - NR | | | 7440-38-2 | Arsenic | | - | | NR | | | 7440-39-3 | Barium - | | -1 | | NR | | | 7440-41-7 | Beryllium | | - | | NR | | | 7440-43-9 | Cadmium | | | | NR | | | 7440-70-2 | Calcium | | | | NR | | | | Chromium | | | | NR | | | | Cobalt | | | | NR | | | | Copper | | | | NR | | | | Iron | | | | NR | | | | Lead | | _ | | NR | | | | Magnesium | <u></u>] | _ | | NR | | | | Manganese | | _ | | NR | | | 7439-97-6 | Mercury | 0.03 | - | | CV | | | | Nickel | | | | NR | | • | | Potassium | | - | | NR | | | | Selenium_ | | -1 | | NR
NR | | | | Silver | | -1 | | - NR | | | | SodiumThallium | | -1 | | - NR | | | | Vanadium_ | | [-] | | - NR | | | 7440-66-6 | Zinc | | - | | - NR | | | 7440 00 0 | Cyanide_ | | -
 - | | NR | | lor Before: | | | y Before: | | | Texture: | | lor After: | ·—· | Clarit | y After: | | _ | Artifacts: | | mments: | | | | | | | | <u> </u> | # INORGANIC ANALYSES DATA SHEET | EPA | SAMPL | E NO. | |------------|-------|-------| |------------|-------|-------| | | e: AQUATE | C | | Contract: 91 | 108 | 2 | K40296W | |--------|--------------|-----------|-----------------------|-----------------|-----------|-------------|----------------| | | | | | | | | SDG No.: 4011 | | | - | er): FISH | | | _ | | e ID: 201387 | | | | LOW | _ | | | | ived: 10/14/93 | | VC1 (| low/mea/. | | _ | | Du | | 21001 20/24/55 | | Solid | s: | 100. | 0 | | | | | | | Conc | entration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | | AS No. | Analyte | Concentration | | Q | M | | | 1 | AS NO. | Midiyce | Concentracton | | Q | n | | | 7 | 429-90-5 | Aluminum | | - | | NR | | | 7 | 440-36-0 | Antimony_ | | - | | NR | | | 7 | 440-38-2 | Arsenic | | | | NR | | | | | Barium | | <u> </u> | | NR | | | | | Beryllium | | | | NR | | | | | Cadmium_ | | | | NR | | | • | | Calcium_ | | [_] | | NR | | | | | Chromium_ | | _ | | NR | | | | | Cobalt | | l _ l . | | NR | | | | | Copper | | _ | | NR | | | | | Iron | | 1_1 | | NR | | | | 439-92-1 | Lead | | _ | | NR | | _ | | | Magnesium | | _ | | NR | | | | | Manganese | | _ | | NR | | | | 439-97-6 | Mercury
Nickel | 0.03 | _ . | | CV
NR | | | | | | | - - | | NR NR | | | | | Potassium
Selenium | | - | | NR | | | | | Silver | | - | | NR | | | | | Sodium | | - | | NR | | | | | Thallium | | - | | NR | | | 1 | | Vanadium Vanadium | | - | | NR | | | | 440-66-6 | Zinc | | - | | NR | | | ' | 440 00 0 | Cyanide | | 1-1 | | NR | | | _ | | | | | | | | lor Be | efore: _ | | Clarit | y Before: | a. | | Texture: | | lor A | fter: _ | | Clarit | ty After: | | | Artifacts: | | mments | | | | | | | | | | | | • | | | | | # INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | سی Name: AQUA | TEC | | Contract: 91 | 1082 | | K40297W | |---------------|------------------------|------------|-----------------|---------------|--------------|----------------| | ab Code: AQUA | I_ Ca | se No.: BI | O SAS No.: | : | | SDG No.: 40118 | | atrix (soil/w | ater): FISH | _ | | Lab | Sample | e ID: 201388 | | evel (low/med |): LOW_ | - | | Date | e Rece | ived: 10/14/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q 1 | M | | | 7429-90-5 | Aluminum | ; | - - | ₁ | NR | | | 7440-36-0 | Antimony_ | | - - | | NR | | | 7440-38-2 | Arsenic - | | [-[- | | NR | | | 7440-39-3 | Barium | | _ _ | | NR | | | 7440-41-7 | Beryllium | | | | NR | | | 7440-43-9 | Cadmium | | l_l_ | | NR | | | 7440-70-2 | Calcium_ | | _ _ | | MR | | | 7440-47-3 | Chromium_ | | - - | | NR | | | 7440-48-4
7440-50-8 | Cobalt | [| [-[- | | NR
NR | | | | Copper | | - - | | NR NR | | | 7439-92-1 | Lead | | - - | | NR | | | | Magnesium | | - - | | NR | | —· | | Manganese | | - - | | NR | | | | Mercury | 0.04 | - - | | CV | | | 7440-02-0 | Nickel | | [- [- | | NR | | | | Potassium | | - - | | NR | | | 7782-49-2 | Selenium | [| - - | | NR | | | | Silver | | [_[_ | | NR | | | | Sodium | | | | NR | | | | Thallium_ | | | | NR | | | | Vanadium_ | | | | NR | | | 7440-66-6 | Zinc | | _ _ | | NR | | | | Cyanide | | - - | | NR | | lor Before: | · | Clarit | ty Before: | ! _ | I | '
Texture: | | | | | | | | | | lor After: | | Clari | ty After: | | | Artifacts: | | mments: | • | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. K40298W | אם Name: AQUA | TEC | | Contract: 9: | 1082 | . | |----------------|---|--|-----------------|-----------|---| | Lab Code: AQUA | .I_ Ca | se No.: BI | SAS No. | • | SDG No.: 40118_ | | Matrix (soil/w | ater): FISH | _ . | | Lab Samp | le ID: 201389 | | Level (low/med |): LOW_ | _ | | Date Rec | eived: 10/14/93 | | % Solids: | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | M | | | 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-02-0 7440-23-5 7440-23-5 7440-28-0 7440-66-6 | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
N | | Color Before: | | Clarit | ty Before: | <u> </u> | Texture: | | Color After: | | Clarit | ty After: | | Artifacts: | | Comments: | F | NT - T MAC | | TLM02 | # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | TEC | | Contract: 91 | 108 | 2 | K40299W | |-------------|-------------------|--
--|--|----------------| | | se No.: BI | | | | SDG No.: 40118 | | _ | | | | | e ID: 201390 | |): LOW | ·
- | | Da | te Rece | ived: 10/14/93 | | 100. | 0 - | | | | | | ncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | CAS No. | Analyte | Concentration | С | Q | m | | | | | - - | | NR | | | | | | | NR | | | | | _ . | | NR | | | | | _]. | | NR | | | | | - | | NR
NR | | | | | - - | | NR | | | | | - : | | NR | | | | | - - | | NR | | 7440-50-8 | Copper | | - : | | nr | | | | | | | NR | | | | | | | NR | | | | | | | NR | | | | | _ . | | NR | | | | 0.02 | _ . | | CV | | | | | - - | | NR
NR | | | | | - - | | NR | | | | | - - | | NR | | | | | - | | NR | | | | | - | | NR | | | | | | | NR | | 7440-66-6 | | | <u> </u> | | NR | | | Cyanide | | -1 | | NR | | l | Clarit | y Before: | l l.
♣ | I | Texture: | | | | | | • | Artifacts: | | | | - | | • | | | | Tater): FISH DOW | Case No.: BIO ater): FISH 100.0 ncentration Units (ug) CAS No. Analyte 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-70-2 7440-70-2 7440-50-8 7439-89-6 7439-92-1 7439-95-4 7439-95-4 7439-96-5 7439-97-6 7440-02-0 7440-02-0 7440-02-0 7440-02-0 7440-02-0 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-22-4 7440-23-5 7440-28-0 7440-66-6 Clarif | Tater): FISH_ 100.0 1 | Case No.: BIO SAS No.: Sater SAS No.: Sater SAS No.: | Case No.: BIO | FORM I - IN #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | b Name: AQU | ATEC | | Contract: 9 | 1082 | K40300W | |--------------|------------------------|-------------------|----------------|------------|-----------------| | b Code: AQU | AI_ Ca | se No.: BIG | SAS No. | : | SDG No.: 40118 | | trix (soil/ | water): FISH | ,
_ | | Lab Samp | le'ID: 201391 | | vel (low/med | d): LOW_ | -10- | | Date Rec | eived: 10/14/93 | | Solids: | 100. | 0 | | | | | Co | oncentration | Units (ug | /L or mg/kg dr | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | NR | | | 7440-36-0 | Antimony | | - | NR | | | 7440-38-2 | Arsenic - | | 1-1 | NR | | | 7440-39-3 | Barium | - | - - | NR | | | | Beryllium | | - | NR | | | 7440-43-9 | Cadmium | | | NR | | | 7440-70-2 | Calcium | | | NR | | | 7440-47-3 | Chromium | | | NR | | | 7440-48-4 | Cobalt | | | NR | | | 7440-50-8 | Copper | | | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | | NR | | | 7439-95-4 | Magnesium | | 1_1 | NR | | | 7439-96-5 | Manganese | | - | NR | | | 7439-97-6 | Mercury_ | 0.02 | - | CV | | | 7440-02-0 | Nickel | . | - | NR | | • | | Potassium | | | NR | | | | Selenium_ | | - | NR
NR | | | 7440-22-4 | Silver
 Sodium | | [-[| NR NR | | | 7440-23-5
7440-28-0 | Thallium | | - | NR | | | 7440-28-0 | Vanadium | | - | NR | | | 7440-66-6 | Zinc Zinc | | - | NR | | | / 4 4 0 00 - 0 | Cyanide | | - | - NR | | | | | | | | | or Before: | . | Clarit | y Before: | 6 5 | Texture: | | or After: | | Clarit | y After: | | Artifacts: | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Name: AQU | ATEC | _ | Contract: 91 | 108 | 32 | K40301W | |--------------|---|--------------|-----------------|-----------|---------|-----------------| | | | | | | _ | SDG No.: 40118 | | trix (soil/ | water): FISH | - | | La | ab Samp | le ID: 201392 | | vel (low/med | i): LOW_ | _ | • | Da | ate Rec | eived: 10/14/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y v | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | • | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony | [| [- | | NR | | • | 7440-38-2 | Arsenic | | - | | NR | | | 7440-39-3 | Barium | | - | | NR | | | | Beryllium | | - | | NR | | | | Cadmium | | - | | NR | | | 7440-70-2 | Calcium | | _ | | NR | | | 7440-47-3 | Chromium | | _ | | NR | | | | Cobalt | | | | NR | | | 7440-50-8 | Copper | | | | NR | | | 7439-89-6 | Iron | | | | NR | | | | Lead | | | | NR | | | | Magnesium | | _ | | NR | | | 7439-96-5 | Manganese | | _ | | NR | | |
7439-97-6 | Mercury_ | 0.02 | _ | | CV | | | | Nickel | | _ | | NR | | • | ■ · · · · · · · · · · · · · · · · · · · | Potassium | | _ | | NR | | | | Selenium_ | | - | | NR | | | | Silver | | _ | | NR
NR | | | | Thallium | | - | | NR NR | | | 7440-28-0 | Vanadium_ | | - | | NR | | | 7440-62-2 | Zinc | | - | | NR | | | 7440-00-0 | Cyanide | | - | | NR | | | | | | <u> -</u> | | · | | lor Before: | | | ty Before: | | | Texture: | | lor After: | | Clarit | ty After: | | _ | Artifacts: | | LOI ALCEI. | | | - | | | | FORM I - IN ### MISCELLANEOUS PARAMETERS ### MISCELLANEOUS PARAMETERS | Sample ID | Description | Sex | %Lipid | |-----------|--|--------|--------| | K40264W | Otsego City Dam - Golden Redhorse Sucker | female | 2.52 | | K40265W | Otsego City Dam - Golden Redhorse Sucker | female | 2.36 | | K40266W | Otsego City Dam - Golden Redhorse Sucker | male | 1.01 | | K40267W | Otsego City Dam - Golden Redhorse Sucker | male | 1.96 | | K40291W | Otsego City Dam - Golden Redhorse Sucker | male | 3.39 | | K40292W | Otsego City Dam - Golden Redhorse Sucker | female | 2.22 | | K40293W | Otsego City Dam - Golden Redhorse Sucker | male | 3.80 | | K40294W | Otsego City Dam - Golden Redhorse Sucker | male | 4.12 | | K40295W | Otsego City Dam - Golden Redhorse Sucker | female | 2.66 | | K40296W | Otsego City Dam - Golden Redhorse Sucker | male | 2.38 | | K40297W | Otsego City Dam - Golden Redhorse Sucker | male | 3.21 | | K40298W | Otsego City Dam - Golden Redhorse Sucker | male | 2.91 | | K40299W | Otsego City Dam - Golden Redhorse Sucker | male | 3.15 | | K40300W | Otsego City Dam - Golden Redhorse Sucker | female | 3.25 | | K40301W | Otsego City Dam - Golden Redhorse Sucker | male | 2.61 | #### **DATA REVIEW FOR** # ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 40139 PCB, PESTICIDE AND MERCURY ANALYSES **BIOTA - FISH** Analyses performed by: Aquatec, Inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York -- #### <u>Summary</u> The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40139 for the Biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and corrected sample results. Analyses were performed on the following samples: | | | | | | Analysis | | |--------------|--------|---------|-------------|-----------------|-----------------|--------| | Sample
ID | Lab ID | Species | Description | Sample Location | Peet/PCB/
Hg | %Lipid | | K40268F | 215570 | carp | fillet | Otsego Dam | x | × | | K40268R | 215571 | carp | carcass | Otsego Dam | | x | | K40269F | 215572 | carp | fillet | Otsego Dam | x | x | | K40269R | 215573 | carp | carcass | Otsego Dam | | x | | K40270F | 215574 | carp | fillet | Otsego Dam | x | x | | K40270R | 215575 | carp | carcass | Otsego Dam | | X | | K40271F | 215576 | carp | fillet | Otsego Dam | × | x | | K40271R | 215577 | carp | CAICASS | Otsego Dam | | x | | K40272F | 215578 | carp | fillet | Otsego Dam | х | x | | K40272R | 215579 | carp | carcass | Otsego Dam | | x | | K40273F | 215580 | carp | fillet | Otsego Dam | x | x | | K40273R | 215581 | carp | carcass | Otsego Dam | | x | | K40274F | 215582 | carp | fillet | Otsego Dam | х | x | | K40274R | 215583 | carp | carcass | Otsego Dam | | x | | K40275F | 215584 | carp | fillet | Otsego Dam | x | x | | K40275R | 215585 | carp | carcass | Otsego Dam | | x | | K40284F | 215622 | carp | fillet | Otsego Dam | x | × | | K40284R | 215623 | carp | carcass | Otsego Dam | | x | | K40285F | 215586 | carp | fillet | Otsego Dam | x | x | | K40285R | 215587 | carp | carcass | Otsego Dam | | x | | K40286F | 215588 | carp | fillet | Otsego Dam | x | × | | K40286R | 215589 | carp | carcass | Otsego Dam | | x | | K40315F | 215590 | carp | fillet | Trowbridge | x | x | | K40315R | 215591 | carp | carcass | Trowbridge | | × | | K40316F | 215592 | carp | fillet | Trowbridge | x | × | | K40316R | 215593 | carp | carcass | Trowbridge | | × | | K40317F | 215594 | carp | fillet | Trowbridge | × | × | | K40317R | 215595 | carp | carcass | Trowbridge | | x | | | | | | | Analy | rais | |--------------|--------|---------|-------------|-----------------|-----------------|--------| | Sample
ID | Lab ID | Species | Description | Sample Location | Pest/PCB/
Hg | %Elpid | | K40322F | 215604 | carp | fillet | Trowbridge | x | × | | K40322R | 215605 | carp | CAICASS | Trowbridge | | × | | K40325F* | 215606 | carp | fillet | Trowbridge | × | × | | K40325R | 215607 | carp | CAICASS | Trowbridge | | × | MS/MSD/DUP performed on sample PCB ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: #### Calibration The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for nonlinearity at the low end of the calibration curve. #### Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. #### Data Assessment #### 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time with the exception of sample K40284F. All data for this sample have been qualified as estimated. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No Aroclors were detected in the method or instrument blanks. #### 3. System Performance The system performance
was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. #### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. #### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for one surrogate in samples K40271F, K40273F, K40275F, K40285F, K40316F K40325FMS, and K40325FMSD. No qualifiers were added to these samples based on surrogate performance. All other surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. #### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries and the relative percent difference between recoveries (RPD) were within acceptable control limits. All spike recoveries in the matrix spike blank were within acceptable control limits. #### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ### DATA REVIEW CHECKLIST #### PCB Data Review Checklist | | YES | NO | NA. | |--|-----|---|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | *************************************** | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | <u>x</u> | | | Holding Times | | | | | Have any holding times been exceeded? | X | | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | X | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | X | | | | If yes, were the samples reanalyzed? | | <u> x</u> | | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | | | out of | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | ` | | | | Blanks | | | | | is a Method Blank Summary Form present? | x | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ## PCB Data Review Checklist - Page 2 | | YES | NO | NA_ | |---|----------|-----------|-----| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | <u> x</u> | | | Do, any field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | x | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | <u> </u> | | | | Aroclor 1221 | <u> </u> | | | | Aroclor 1232 | X | | | | Aroclor 1242 | X | | | | Aroclor 1248 | X | | | | Aroclor 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | <u> </u> | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | X | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed? | ×X | | | | Are %D values for all compounds within limits (less than 15%)? | x | | | | Analytical Sequence Check | | | | | Is a analytical sequence form present and complete for each column and each period of analyses? | x | | | | Was the proper analytical sequence followed? | X | | | | | | | | ### PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|----------|-----|----| | Cleanup Efficiency Verification | | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | <u>X</u> | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | X | | | | PCB Identification | | | | | Is both a combined and single column Aroclor Identification Report present for every sample? | X | | | | Do the combined column and individual column Aroclor identifications agree? | X | · . | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | × | | Compound Quantitation and Reported Detection Li | mits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | • | | | Where field duplicates submitted with the samples? | | X | | ### PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding | Surrogates - | Column 1 | Surrogates | - Column 2 | |------------|---------|--------------|----------|----------------|------------| | | Time | TCX | DCB | TCX | DCB | | K40268F | | | | | | | K40269F | | | | | | | K40270F | | | | | | | K40271F | | ↓ (57) | | ļ (<u>57)</u> | | | K40272F | | | | | | | K40273F | | ↓ (51) | | ↓ (58) | | | K40274F | | | | | | | K40275F | | J (59) | | | | | K40284F | +2 | | | | | | K40285F | | ↓ (59) | | Į (59) | | | K40286F | | | | | | | K40315F | | | | | | | K40316F | | ↓ (59) | | ↓ (59) | | | K40317F | | | | | | | K40322F | | | | | | | K40325F | | | | | | | K40325FMS | | ↓ (52) | | | | | K40325FMSD | | ↓ (47) | | ↓ (53) | | Surrogate Standards TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl #### Qualifiers: Surrogates diluted out Recovery high Recovery low Unless otherwise noted, all parameters are within specified limits. ### PCB Calibration Summary Instrument: HP2618 Column: RTX-35 / RTX-5 | Date: | 4/30/94 0543 | 5/6 | 5/6 | 5/7 | 5/7 | 5/7 | 5/7 | |----------------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | to
5/1/94 0106 | 1401 | 1435 | 0044 | 0119 | 0809 | 0843 | | V | Initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont:
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | % D | X B | %D | % D | % B | % D | | Aroclor 1016 | 4.2 / 4.4 | | | | | | 3.0 | | Aroclor 1221 | 5.1 / 6.9 | | | | | | | | Aroclor 1232 | 4.2 / 3.1 | | | | | | | | Aroclor 1242 | 3.1 / 3.4 | | | | | | | | Aroclor 1248 | 3.4 / 3.0 | 0.5 | | 3.0 | | 3.0 | · | | Arocior 1254 | 3.1 / 3.6 | | 0.5 | | | | | | Aroclor 1260 | 3.8 / 3.4 | | | | 6.0 | | L | | Tetrachioro-m-xylene | 5.2 / 6.4 | | | | | | | | Decachlorobiphenyl | 7.9 / 8.1 | | | | | | | | Affected Samples: | | | | | | | I | | | | | | | | | | | | | | | | 7 | | øs | | | | | | | | | | | | | ### PCB Calibration Summary - Page 2 Instrument: <u>HP2618</u> Column: <u>RTX-35 / RTX-5</u> | Date: | | 5.77 | 5/7 | 5/10 | 5/10 | 5/10 | 5/10 | |----------------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | | 1534 | 1608 | 0423 | 0457 | 1147 | 1221 | | | initial Cal. | Cont.
Cal. | Cont.
Cal. | Cent.
Cel. | Cont.
Cal. | Cont.
Cal: | Cont.
Cal. | | • | %RSD | % 0 | %D | %D | % D | %D | %D | | Aroclor 1016 | | | | | 0.5 | | | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | | | | | | | Aroclar 1242 | | | 2.0 | | | | 6.0 | | Aroclor 1248 | | 2.0 | | 5.0 | | 6.5 | | | Aroclor 1254 | | | | | | | | |
Aroclor 1260 | | | | | | | | | Tetrachloro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | · | !
 | 1 | | | | | ļ | | | | Ì | | | | | | | | | | | | | | | | | ### PCB Calibration Summary - Page 3 Instrument: <u>HP2618</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 5/10/94 1845 | 5/16 | 5/16 | 5/16 | 5/18 | | | |----------------------|--------------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | to
5/11/94 1334 | 1430 | 1503 | 2122 | 2155 | | | | 1 | initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | % D | %D | %D | % D | % D | %D | | Arocior 1016 | 4.6 / 4.6 | | | | 7.0 | | | | Aroclor 1221 | 3.9 / 3.9 | | | | | | | | Aroclor 1232 | 3.2 / 3.7 | | | | | | | | Aroclor 1242 | 2.7 / 2.8 | | | | | | | | Aroclor 1248 | 3.2 / 2.7 | 2.0 | | 1.0 | | | | | Aroclor 1254 | 2.8 / 2.8 | | | | | | | | Aroclor 1260 | 3.5 / 2.7 | | 1.5 | | | | | | Tetrachioro-m-xylene | 4.9 / 3.6 | | | | | | | | Decachlorobiphenyl | 8.6 / 9.2 | | | | | | | | Affected Samples: | · | ø | | | | | | | | | | | | | | ĺ | | | | | | | | | | | | | | | | | | ļ | | · | | | | | | | | | | | | · | | | ### PCB Calibration Summary - Page 4 Instrument: <u>HP2087</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 5/18/94 1800 | 5/19 | 5/19 | 5/19 | 5/19 | | | |----------------------|--------------------|---------------|---------------|---------------|---------------|---------------|--------------| | Time: | to
5/19/94 1254 | 1607 | 1640 | 2820 | 2353 | | | | • | Initial Cal. | Gont.
Cal. | Gant.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal | | | %RSD | %D | *0 | % D | %0 | % D | % D | | Aroclor 1016 | 3.9 /. 4.3 | | 11.0 | | | | | | Arocior 1221 | 4.6 / 5.5 | | | | | | | | Aroclor 1232 | 2.9 / 3.2 | | | | | | | | Aroclor 1242 | 3.6 / 3.3 | | | | 1.5 | | | | Aroclor 1248 | 3.1 / 3.0 | 1.5 | | 0.5 | | | | | Aroclor 1254 | 3.0 / 3.0 | | | | | | | | Aroclor 1260 | 3.2 / 2.3 | | | | | | | | Tetrachioro-m-xylene | 5.0 / 7.7 | | | | | | | | Decachlorobiphenyl | 8.8 / 7.2 | | | | | | | | Affected Samples: | | | | | | | | | | | _ | | | | | <u></u> | | | | | | | | | - | | · <u>[</u> | | | | | | | | | | | <u></u> | | | | | | | <u> </u> | ļ | | | | | | | | | | | | | 6 6 | ļ | | | | | | | | CORRECTED ANALYSIS SUMMARY FORMS EPA SAMPLE NO. K40268F Lab Code: AQUAI Lab Name: Aquatec, Inc. Contract: 91082 BIO SDG: 40139 Case: Phase Type: **BIOTA** Lab Sample ID: 215570 Phase Weight: 10.0 Date Received: 10/13/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 1.0 Date Analyzed: 05/06/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | ι | | 11104-28-2 | Aroclor-1221 | 0.050 | ī | | 11141-16-5 | Aroclor-1232 | 0.050 | Į | | 53469-21-9 | Arocior-1242 | 0.050 | t | | 12672-29-6 | Aroclor-1248 | 0.56 | | | 11097-69-1 | Aroclor-1254 | 0.30 | | | 11096-82-5 | Aroclor-1260 | 0.13 | | EPA SAMPLE NO. K40269F Lab Name: Aquatec, Inc. Lab Code: AQUAI Phase Type: BIOTA Lab Sample ID: 215572 Phase Weight: 10.0 (g) Date Received: 10/13/93 Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 5.0 Date Analyzed: 05/06/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.76 | | | 11104-28-2 | Aroclor-1221 | 0.25 | ι | | 11141-16-5 | Arocior-1232 | 0.25 | Ĺ | | 53469-21-9 | Aroclor-1242 | 0.25 | J | | 12672-29-6 | Arocior-1248 | 0.25 | | | 11097-69-1 | Aroclor-1254 | 1.8 | | | 11096-82-5 | Aroclor-1260 | 0.28 | | EPA SAMPLE NO. K40270F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40139 Phase Type: **BIOTA** Lab Sample ID: 215574 Phase Weight: 10/13/93 10.0 Date Received: (0) Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 1.0 Date Analyzed: 05/07/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | υ | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Arocior-1242 | 0.48 | | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.23 | | | 11096-82-5 | Aroclor-1260 | 0.050 | U | EPA SAMPLE NO. K40271F Lab Name: Aquatec, Inc. Lab Code: AQUAI 40139 Contract: 91082 Case: BIO SDG: **BIOTA** Phase Type: Lab Sample ID: 215576 Phase Weight: 10.0 (0) Date Received: 10/13/93 Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 2.0 Date Analyzed: 05/07/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|----| | 12674-11-2 | Aroclor-1016 | 0.10 | ับ | | 11104-28-2 | Aroclor-1221 | 0.10 | υ | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 1.1 | | | 11097-69-1 | Aroclor-1254 | 0.83 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | EPA SAMPLE NO. K40272F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40139 Phase Type: **BIOTA** Lab Sample ID: 215578 Phase Weight: Date Received: 10.0 10/13/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 1.0 Date Analyzed: 05/07/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.53 | | | 11104-28-2 | Aroclor-1221 | 0.050 | υ | | 11141-16-5 | Arocior-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.62 | | | 11096-82-5 | Aroclor-1260 | 0.050 | U | EPA SAMPLE NO. K40273F Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 Case: BIO SDG: 40139 Phase Type: BIOTA Phase Weight: 10.0 (g) Injection Volume: 1.0 (uL) Dilution Factor: 5.0 Contract: 215580 Date Extracted: 10/13/93 04/07/94 Date Analyzed: 05/10/94 N Sulfur Clean-up: _ ___(Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | u | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | l | | 53469-21-9 | Aroclor-1242 | 0.25 | ī | | 12672-29-6 | Aroclor-1248 | 2.0 | l | | 11097-69-1 | Aroclor-1254 | 0.37 | | | 11096-82-5 | Aroclor-1260 | 0.19 | J | EPA SAMPLE NO. K40274F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 BIO SDG: 40139 Case: **BIOTA** Lab Sample ID: Phase Type: _ 215582 Phase Weight: 10.0 Date Received: 10/13/93 **(g)** Injection Volume: __ 1.0 Date Extracted: 04/07/94 (uL) Dilution Factor: 5.0 Date Analyzed: 05/07/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Arocior-1232 | 0.25 | U | | 53469-21-9 | Arocior-1242 | 2.2 | | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 1.7 | | | 11096-82-5 | Aroclor-1260 | 0.25 | U | EPA SAMPLE NO. Phase Weight: 10.0 (g) Date Received: 10/13/93 Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 5.0 Date Analyzed: 05/07/94 Sulfur Clean-up: N (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | (| | 11104-28-2 | Aroclor-1221 | 0.25 | | | 11141-16-5 | Aroclor-1232 | 0.25 | ι | | 53469-21-9 | Aroclor-1242 | 1.2 | | | 12672-29-6 | Arocior-1248 | 0.25 | Į | | 11097-69-1 | Aroclor-1254 | 1.4 | | | 11096-82-5 | Aroclor-1260 | 0.25 | Į | EPA SAMPLE NO. K40284F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40139 Phase Type: **BIOTA** Lab Sample ID: 215622 (g) Phase Weight: 10.0 Date Received: 10/13/94 Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: 5.0 05/19/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.25 | UJ | | 11104-28-2 | Aroclor-1221 | 0.25 | UJ | | 11141-16-5 | Aroclor-1232 | 0.25 | UJ | | 53469-21-9 | Aroclor-1242 | 0.25 | υJ | | 12672-29-6 | Arocior-1248 | 3.0 | J | | 11097-69-1 | Aroclor-1254 | 2.4 | 7 | | 11096-82-5 | Aroclor-1260 | 0.25 | υJ | | 11030-02-3 | A100101-1200 | 0.23 | <u> </u> | **EPA SAMPLE NO.** K40285F Lab Code: AQUAI Lab Name: Aquatec, Inc. SDG: _ 40139 Contract: 91082 Case: BIO Phase Type: **BIOTA** Lab Sample ID: 215586 Phase Weight: 10.0 Date Received: 10/14/93 (g) 1.0 Injection Volume: (uL) Date Extracted: 04/07/94 Dilution Factor: 5.0 Date Analyzed: 05/07/94 Sulfur Clean-up: Ν (Y/N) |
CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |-------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.92 | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 2.0 | | | 11096-82-5 | Aroclor-1260 | 0.22 | J | EPA SAMPLE NO. K40286F Lab Code: AQUAI Lab Name: Aquatec, Inc. SDG: ___ 91082 Case: BIO 40139
Contract: Phase Type: **BIOTA** Lab Sample ID: 215588 Phase Weight: 10.0 Date Received: 10/14/93 (g) 1.0 04/07/94 Injection Volume: (uL) Date Extracted: Dilution Factor: Date Analyzed: 5.0 05/07/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | ι | | 11104-28-2 | Aroclor-1221 | 0.25 | ι | | 11141-16-5 | Aroclor-1232 | 0.25 | | | 53469-21-9 | Aroclor-1242 | 3.0 | | | 12672-29-6 | Aroclor-1248 | 0.25 | l | | 11097-69-1 | Aroclor-1254 | 3.4 | | | 11096-82-5 | Aroclor-1260 | 0.25 | į | EPA SAMPLE NO. Phase Type: Lab Sample ID: 215590 **BIOTA** Phase Weight: 10.0 Date Received: 10/14/93 (9) Injection Volume: 1.0 Date Extracted: 04/07/94 (uL) Dilution Factor: 5.0 Date Analyzed: 05/10/94 Lab Name: Aquatec, Inc. Contract: _ 91082 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 1.5 | | | 11097-69-1 | Aroclor-1254 | 0.89 | | | 11096-82-5 | Aroclor-1260 | 0.22 | J | **EPA SAMPLE NO.** K40316F Lab Name: Aquatec, Inc. Lab Code: **IAUDA** 91082 Contract: Case: BIO SDG: 40139 Phase Type: **BIOTA** Lab Sample ID: 215592 Phase Weight: 10.0 Date Received: 10/14/93 (g) Injection Volume: 1.0 Date Extracted: 04/07/94 (uL) Dilution Factor: 5.0 Date Analyzed: 05/10/94 Sulfur Clean-up: _ N (Y/N) | CAS N | CAS NO. COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |---------|-------------------|-----------------------|----------| | 12674- | 11-2 Aroclor-1016 | 0.25 | U | | 11104-2 | 28-2 Aroclor-1221 | 0.25 | J U | | 11141- | 6-5 Aroclor-1232 | 0.25 | U | | 53469-2 | 21-9 Arocior-1242 | 0.25 | Jυ | | 12672-2 | 29-6 Aroclor-1248 | 0.25 | U | | 11097-6 | 9-1 Aroclor-1254 | 1.9 | | | 11096-8 | 32-5 Aroclor-1260 | 0.23 | J | EPA SAMPLE NO. K40317F Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: __ 40139 Phase Type: **BIOTA** Lab Sample ID: 215594 Phase Weight: 10.0 **(g)** Date Received: 10/14/93 Injection Volume: _ 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: __ 2.0 Date Analyzed: 05/10/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.34 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Arocior-1232 | 0.10 | U | | 53469-21-9 | Arocior-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.81 | | | 11096-82-5 | Aroclor-1260 | 0.16 | | | | | | | EPA SAMPLE NO. K40322F Lab Code: Lab Name: Aquatec, Inc. AQUAI 91082 Case: BIO SDG: 40139 Contract: Phase Type: **BIOTA** Lab Sample ID: 215604 10.0 Phase Weight: 10/14/93 **(g)** Date Received: Injection Volume: 1.0 (uL) Date Extracted: 04/07/94 Dilution Factor: ___ 5.0 Date Analyzed: 05/10/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.71 | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Arocior-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.6 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | EPA SAMPLE NO. K40325F Lab Code: _ Lab Name: Aquatec, Inc. AQUAI 91082 BIO SDG: 40139 Contract: _ Case: _ Phase Type: **BIOTA** Lab Sample ID: 215606 Phase Weight: _ 10.0 Date Received: 10/15/93 (g) 1.0 Injection Volume: (uL) Date Extracted: 04/07/94 05/16/94 5.0 Dilution Factor: Date Analyzed: Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Arocior-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | u | | 12672-29-6 | Aroclor-1248 | 2.4 | | | 11097-69-1 | Aroclor-1254 | 1.4 | | | 11096-82-5 | Aroclor-1260 | 0.36 | | ### PESTICIDE ANALYSES #### <u>Introduction</u> Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### Data Assessment #### 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. All samples were originally analyzed within the specified holding time. Samples K40270FRE, K40271FRE, K40272FRE, K40284FRE, K40322FRE and K40325FRE, were reanalyzed over the specified holding time. All data for the reanalyses have been qualified as estimated due to the deviation. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. #### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. #### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit. #### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were above the acceptable control limits for both surrogates in samples K40270F, K40272F and K40322F. All detected compounds in these samples have been qualified as estimated due to the deviation. All other surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40268F | Aldrin
gamma-Chlordane
4,4'-DDE
cis-Nonachlor | 40.9%
81.8%
25.8%
40.4% | |-----------|---|--| | K40269F | Aldrin Heptachlor Epoxide gamma-Chlordane trans-Nonachlor Dieldrin 4,4'-DDT | 55.6%
33.3%
77.8%
349.4%
181.8%
782.4% | | K40270F | alpha-Chlordane
cis-Nonachlor
4,4'-DDT | 35.0%
38.5%
181.3% | | K40270FRE | alpha-Chiordane
trans-Nonachior
cis-Nonachior
4,4'-DDT | 25.3%
30.0%
75.9%
75.0% | | K40271F | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
Dieldrin
cis-Nonachlor
4,4'-DDT | 37.6%
104.0%
168.8%
123.8%
178.6%
33.3%
615.8% | | K40271FRE | Aldrin
gamma-Chlordane
alpha-Chlordane
trans-Nonachlor
4,4'-DDE
cis-Nonachlor
4,4'-DDT | 35.6%
92.3%
34.4%
202.6%
27.1%
73.9%
650.0% | |-----------
--|---| | K40272F | Aldrin Heptachlor Epoxide gamma-Chlordane trans-Nonachlor Dieldrin cis-Nonachlor 4,4'-DDT | 54.0%
102.9%
88.9%
276.5%
136.4%
50.0%
653.8% | | K40272FRE | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
Dieldrin | 53.6%
107.1%
79.5%
29.0%
110.5% | | K40273F | Aldrin
gamma-Chlordane
alpha-Chlordane
trans-Nonachlor
4,4'-DDE
cis-Nonachlor | 31.0%
133.3%
52.0%
262.1%
41.0%
52.8% | | K40274F | gamma-Chlordane
alpha-Chlordane
trans-Nonachlor
Dieldrin
4,4'-DDT | 104.8%
36.8%
280.0%
120.0%
500.0% | | K40275F | Aldrin
gamma-Chlordane
trans-Nonachlor
Dieldrin
4,4'-DDT | 31.6%
88.9%
178.6%
141.7%
494.1% | | K40284F | Aldrin
gamma-Chlordane
trans-Nonachlor
Dieldrin
cis-Nonachlor
4,4'-DDT | 36.0%
106.8%
171.4%
151.8%
33.3%
502.7% | | K40284FRE | Aldrin | 35.9% | |-----------|--------------------|--------| | | gamma-Chlordane | 102.9% | | | trans-Nonachlor | 247.4% | | | Dieldrin | 100.0% | | | cis-Nonachlor | 29.2% | | | 4,4'-DDT | 512.9% | | K40285F | Aldrin | 38.6% | | | gamma-Chlordane | 88.9% | | | trans-Nonachlor | 218.2% | | | Dieldrin | 183.3% | | | cis-Nonachlor | 100.0% | | | 4,4'-DDT | 665.0% | | K40286F | Aldrin | 28.6% | | | gamma-Chlordane | 94.4% | | | trans-Nonachlor | 184.0% | | | Dieldrin | 136.0% | | | 4,4'-DDT | 454.5% | | K40315F | Aldrin | 28.8% | | | Heptachlor Epoxide | 34.6% | | | gamma-Chlordane | 88.2% | | | alpha-Chlordane | 35.8% | | | trans-Nonachlor | 233.3% | | | 4,4'-DDE | 28.6% | | | Dieldrin | 163.6% | | | 4,4'-DDT | 682.6% | | K40316F | Aldrin | 62.7% | | | gamma-Chlordane | 66.7% | | | trans-Nonachlor | 353.1% | | | 4,4'-DDD | 27.3% | | | cis-Nonachlor | 108.3% | | | 4,4'-DDT | 718.8% | | K40317F | Aldrin | 41.2% | | | gamma-Chlordane | 80.9% | | | cis-Nonachlor | 70.7% | | K40322F | Aldrin | 44.0% | | | gamma-Chlordane | 96.2% | | | trans-Nonachlor | 264.3% | | | 4,4'-DDE | 131.1% | | | Dieldrin | 180.0% | | | 4,4'-DDT | 619.0% | | K40322FRE | Aldrin | 42.2% | | , | gamma-Chlordane | 86.7% | | | trans-Nonachlor | 338.4% | | | cis-Nonachlor | 38.5% | | | 4,4'-DDT | 607.7% | | | | | | K40325F | Heptachlor Epoxide
gamma-Chlordane | 31.9%
139.1% | |-----------|---------------------------------------|-----------------| | | trans-Nonachlor | 300.0% | | | 4,4'-DDE | 39.7% | | | cis-Nonachlor | 47.4% | | | 4,4'-DDT | 715.9% | | K40325FRE | gamma-Chlordane | 125.0% | | | alpha-Chiordane | 242.1% | | | 4,4'-DDE | 50.0% | | | Dieldrin | 163.6% | | | 4,4'-DDT | 682.6% | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. #### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. Recoveries of Aldrin were above the acceptable control limit in the matrix spike and matrix spike duplicate samples. The high recovery can be attributed to positive interference from PCBs present in the matrix spike. All other recoveries and the relative percent difference (RPD) between recoveries were within acceptable control limits. Matrix spike recoveries were with acceptable control limits for the matrix spike blank (MSB) sample. No qualifiers were added to the samples based on matrix spike performance. #### 8. General Comments Elevated surrogate recoveries in the initial analyses of samples K40270F, K40271F, K40272F, K40284F, K40322F and K40325F suggested possible sample extract evaporation. The reanalyses of the archived aliquot had acceptable surrogate recoveries. The data from the reanalyses of these samples should be used for all compounds. #### 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. **Data Validation Checksheets** ### Pesticide Data Validation Checklist | | YES | NO | NA | |--|----------|-------------|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | <u> </u> | | | | Are the samples numbers included in the narrative? | x | | | | Are the sample chain-of-custodies present? | <u> </u> | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | <u></u> | | | Holding Times | • | | | | Have any holding times been exceeded? | X | | | | Surrogate Recovery | | | | | Are the surrogate recovery forms present? | <u> </u> | | | | Are all the samples listed on the appropriate surrogate recovery form? | X | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | <u>x</u> | | | | If yes, were the samples reanalyzed? | X | | | | Were the method blanks reanalyzed? | | | X | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | <u> </u> | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | | | out of8 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | | | | | Blanks | | | | | Is the method blank summary form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ### Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA | |--|-------------|-------------|----| | Is the chromatographic performance acceptable for each instrument? | <u></u> | | | | Do any method/reagent/instrument blanks have positive results? | | × | | | Do any trip/field/rinse blanks have positive results? | | | Х | | Are there field/rinse/equipment blanks associated with every sample? | | x | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts preblanks, and MS/MSD? | esent for a | ıli samples | 3 | | peak resolution check | <u> x</u> | | | | performance evaluation mixtures (BCS) | <u> </u> | | | | Toxaphene multipoint calibration | X | | | | Pesticide/PBB multipoint calibration | X | | | | Pesticide/PBB mid-point standard | X | | | | instrument blanks | X | | | | Are Forms VI 1-4 present and complete for each column and analytical sequence? | x | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | X | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | x | | | | is Form VII-1 present for each BCS analyzed for both columns? | x | | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | x | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | x | | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | x | | | | Are RPD values for all compounds < 25%? | X | | | ### Pesticide/PCB Data Validation Checklist - Page 3 | | YES | NO | NA | |---|-----|-------------|-------------| | Analytical Sequence Check | | | | | Is Form VIII present and complete for each column and each period of analyses? | X | | | | Was the proper analytical sequence followed? | X | | | | Cleanup Efficiency Verification | | | | | Is Form IX-1 present for each lot of Florisil cartridges used? | x | | | | Are all samples listed on the form? | X | | | | If GPC cleanup was performed, is Form IX-2 present? | | | X | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits for: | | | | | Florisil cartridge check (80-120%) | X | | | | GPC calibration (80-110%) | | | X | | Pesticide/PBB Identification | | | | | Is a Form X present for every sample in which a pesticide or PCB was detected? | x | | | | Was GC/MS confirmation provided when required? | | | X | | Is the percent difference (%D) calculated for the positive sample results on the two columns less than 25%? | | x | | | Were there any false negatives? | | × | | | Compound Quantitation and Reported Detection Limit | ls. | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | · | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | × | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | X | | | | | | | ### Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample ID | Holding | Surrogates | - Column 1 | Surrogates | - Column 2 | |--------------|---------|------------|------------|------------|------------| | | Time | TOX | DCB | TCX | DGB | | K40268F | | | | | | | K40269F | | | | | | | K40270F | | † (211) | † (189) | † (222) | † (185) | | K40270FRE | +7 | | | | | | K40271F | | | | | | | K40271FRE | +7 | | | | | | K40272F | | † (191) | † (172) | † (198) | † (171) | | K40272FRE | +7 | | | | | | K40273F | | |
 | | | K40274F | | | | | | | K40275F | | | | | | | K40284F | | | | | | | K40284FRE | +8 | | _ | | | | K40285F | | | | | | | K40286F | | | | | | | K40315F | , | | | | | | K40316F | | | | | | | K40317F | | | | | | | K40322F | | † (157) | † (158) | † (161) | † (153) | | K40322FRE | +7 | | | | | | K40325F | | | | | | | K40325FRE | +8 | | | | | | K40325FMSRE | +8 | | | | | | K40325FMSDRE | +8 | | | | | Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: D Surrogate diluted out Recovery high Recovery low Unless otherwise noted, all samples are within specified limits. ### Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/6/94 | 5/10 | 5/10 | 5/10 | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------------------------------| | Time: | 17:57 | 02:55 | 11:15 | 20:58 | | | | | | Initial
Cal. | Cont.
Cat. | Cont.
Cal. | Cont.
Cal. | Cont.
Celi | Cont.
Cal. | Cont.
Cal. | | , | %ASD | %D | %0 | % D | % D | %D | % D | | 2-Bromobiphenyl | ok | ok | ok | ok | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | |
 | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | : | | | gamma-Chlordane | | | | | | | | | aipha-Chlordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | · | | | | | | | | Dieldrin | | | | | | | ··· | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | · · · · · · · · · · · · · · · · · · · | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | × | | Tetrachioro-m-xylene | | | | | 6 | | | | Decachlorobiphenyl | | | × | | | | · · · · · · | | Affected Samples: | Γ | | | | | | | | ### Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/6/94 | 5/10 | 5/10 | 5/10 | | | | |-----------------------------|-----------------|---------------|-------|---------------|---------------|---------------|---------------| | Time: | 17:57 | 02:55 | 11:15 | 20:58 | | | | | • | initial
Cal. | Cont.
Cal. | Cont. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | % D | %D | % D | *0 | % D | % D | | 2-Bromobiphenyl | ok | ok | ok | ok | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chiordane | | | | | |
 | | | alpha-Chiordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachioro-m-xylene | | | | | S is | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | <u> </u> | | [| | | | | | | | | | | | | | | | | | { | | | | | | | | | Γ | | | | | | | | Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/12/94 | 5/13 | | | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---|--------------|---------------| | Time; | 17:54 | 08:10 | | | | | | | | initial
Cal. | Cont.
Cal. | Cont.
Cal. | Gont.
Cal. | Cont.
Cal. | Cont.
Cal | Cont.
Cal: | | · | %ASD | % D | % D | % D | % D | %D | %D | | 2-Bromobiphenyl | ok | ok | | | | | | | 3-Bromobiphenyl | | | | | <u> </u> | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | _ | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | <u> </u> | | | | alpha-Chiordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachior | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | · | | | | | | Tetrachioro-m-xylene | | | | | <u> </u> | | | | Decachiorobiphenyl | | | | | | | | | Affected Samples: | Ī | | | | | | | | Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Dale: | 5/12/94 | 5/13 | | | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | 17:57 | 08:10 | | | | | | | 1 | initial
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %ASD | % 0 | % D | % D | % 0 | %D | % D | | 2-Bromobiphenyl | ok | ok | | | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | ļ | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | <u> </u> | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | :
 | | | | ļ | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | ļ | | | Hexabromobiphenyl
(BP-6) | | | <u>.</u> | | | | | | Toxaphene | | | | | | | | | Tetrachioro-m-xylene | | | - | | ø. | | | | Decachlorobiphenyl | | · | | | | | | | Affected Samples: | [| | | | | | | | | Ī | | | | | | | | Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date; | 5/17/94 | 5/24 | 5/25 | 5/25 | | | | |-----------------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | 17:19 | 09:01 | 00:48 | 08:33 | | | | | | initial
Cal | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | % 0 | % D | %D | % D | % D | % D | | 2-Bromobiphenyl | ok | ok | ok | ok | | | | | 3-Bromobiphenyl | | | | | | <u> </u> | | | 4-Bromobiphenyl | | | | | | | | | Hexachiorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | <u> </u> | <u></u> | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachloro-m-xylene | | | | | 6 | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | | | | | | | | | | | | [| Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/17/94 | 5/24 | 5/25 | 5/25 | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | 17:19 | 09:01 | 00:48 | 08:33 | | | | | • | initial
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | %D | % D | %D | %0 | %D | %D | | 2-Bromobiphenyl | ok | ok | ok | ok | | | | | 3-Bromobiphenyl | | | _ | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | P | - | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachior | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachloro-m-xylene | | | | | * | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | | | [| Corrected Sample Analysis Data Sheets Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40268F 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215570 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/10/94 Sulfur Clean-up: N SDG: | | | · · · · · · · · · · · · · · · · · · · | | |------------|--------------------|---------------------------------------|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.022 | 7 | | 1024-57-3 | Heptachlor Epoxide | 0.011 | | | 5103-74-2 | gamma-Chlordane | 0.0066 | NT | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.031 | 丁 丁 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.011 | | | 5103-73-1 | cis-Nonachlor | 0.0057 | 75 | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U _ | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. K40269F Lab Code: AQUAI AQUAI Contract: 91082 SDG: 40139 Case: BIO SDG: 215572 Chase Type: Biota Date Received: 10/13/93 Client ID No. | | | rap Sample ID: | 2100/2 | |------------------|---------|------------------|----------| | Phase Type: | Biota | Date Received: | 10/13/93 | | Phase Weight: | 10.0 g | Date Extracted: | 04/07/94 | | Extraction: | Soxhlet | Date Analyzed: | 05/10/94 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | | | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a |
|-----------------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.054 | IN | | 1024-57-3 | Heptachlor Epoxide | 0.021 | 丁 | | 5103-74-2 | gamma-Chlordane | 0.018 | JN | | 5103-71-9 | alpha-Chlordane | 0.0079 | | | 39705-80-5 | trans-Nonachlor | 0.0089 | | | 72-55-9 | 4,4'-DDE | 0.11 | | | 60 57 1 | Dieldrin | 0.011 | | | 72-54-8 | 4,4'-DDD | 0.037 | | | 5103-73-1 | cis-Nonachlor | 0.021 | | | 50-29-3 | 4,4'-DDT | 0.017 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. SDG: 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215574R1 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|-----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υJ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | UJ | | 118-74-1 | Hexachlorobenzene | 0.0050 | しけ | | 58-89-9 | gamma-BHC | 0.0050 | U.J | | 309-00-2 | Aldrin | 0.014 | ナ | | 1024-57-3 | Heptachlor Epoxide | 0.013 | 5 | | 5103-74-2 | gamma-Chlordane | 0.0086 | 5 | | 5103-71-9 | alpha-Chlordane | 0.0079 | 7 | | 39765-80-5 | trans-Nonachlor | 0.010 | J | | 72-55-9 | 4,4'-DDE | 0.085 | | | 60-57-1 | Dieldrin | 0.010 | 7 | | 72-54-8 | 4,4'-DDD | 0.025 | 7 | | 5103-73-1 | cis-Nonachlor | 0.0054 | JN | | 50-29-3 | 4,4'-DDT | 0.012 | ブル | | 36355-01-8 | Hexabromobiphenyl | 0.020 | UJ | | 8001-35-2 | Toxaphene | 0.20 | リナ | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. SDG: 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215576R1 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | UJ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | UJ | | 92-66-0 | 4-Bromobiphenyl | 0.010 | UJ | | 118-74-1 | Hexachlorobenzene | 0.0050 | UJ | | 58-89-9 | gamma-BHC | 0.0050 | UJ | | 309-00-2 | Aldrin | 0.045 | | | 1024-57-3 | Heptachlor Epoxide | 0.023 | 7 | | 5103-74-2 | gamma-Chlordane | 0.013 | | | 5103-71-9 | alpha-Chlordane | 0.0064 | J | | 39765-80-5 | trans-Nonachlor | 0.0076 | | | 72-55-9 | 4,4'-DDE | 0.059 | 丁 | | 60-57-1 | Dieldrin | 0.010 | U.J | | 72-54-8 | 4,4'-DDD | 0.027 | J | | 5103-73-1 | cis-Nonachlor | 0.0069 | JN | | 50-29-3 | 4,4' DDT | 0.010 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U,J | | 8001-35-2 | Toxaphene | 0.20 | UT | Client ID No. K40272FRE Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 Contract: BIO Case: SDG: 40139 Lab Sample ID: 215578R1 Phase Type: **Biota** Date Received: 10/13/93 Phase Weight: 10.0 Date Extracted: 04/07/94 Extraction: Soxhlet Date Analyzed: 05/24/94 Dilution Factor: 1.0 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|----|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | UJ | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | UJ | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | UJ | | | 118-74-1 | Hexachlorobenzene | 0.0050 | UJ | | | 58-89-9 | gamma-BHC | 0.0050 | UĴ | | | 309-00-2 | Aldrin | 0.028 | NE | | | 1024-57-3 | Heptachlor Epoxide | 0.014 | | -R | | 5103-74-2 | gamma-Chlordane | 0.0078 | NT | | | 5103-71-9 | alpha-Chlordane | 0.0050 | UJ | | | 39765-80-5 | trans-Nonachlor | 0.0050 | UJ | | | 72-55-9 | 4,4'-DDE | 0.031 | ナ | • | | 60-57-1 | Dieldrin | 0.010 | U | -R | | 72-54-8 | 4,4'-DDD | 0.013 | T | • | | 5103-73-1 | cis-Nonachlor | 0.0050 | UT | | | 50-29-3 | 4,4'-DDT | 0.010 | UJ | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | リテ | | | 8001-35-2 | Toxaphene | 0.20 | UJ | | Lab Name: Aquatec, Inc. K40273F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40139 Lab Sample ID: 215580 Client ID No. Phase Type: **Biota** Date Received: 10/13/93 Phase Weight: 10.0 Date Extracted: 04/07/94 Extraction: Soxhlet Date Analyzed: 05/10/94 Dilution Factor: 1.0 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|-----|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.058 | J | | | 1024-57-3 | Heptachlor Epoxide | 0.035 | | | | 5103-74-2 | gamma-Chlordane | 0.012 | | -R | | 5103-71-9 | alpha-Chlordane | 0.0050 | 77 | | | 39765-80-5 | trans-Nonachler | 0.0058 | | -R | | 72-55-9 | 4,4'-DDE | 0.039 | ज ी | • | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.017 | | | | 5103-73-1 | cis-Nonachlor | 0.0072 | \d_ | | | 50-29-3 | 4,4'-DDT | 0.010 | U | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40274F 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215582 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/13/94 Sulfur Clean-up: N SDG: | COMPOUND | CONCENTRATION (mg/Kg) | a | | |--------------------|---|---------|--| | 2-Bromobiphenyl | 0.010 | U | | | 3-Bromobiphenyl | 0.010 | U | | | 4-Bromobiphenyl | 0.010 | U | | | Hexachlorobenzene | 0.0050 | U | | | gamma-BHC | 0.0050 | U | | | Aldrin | 0.072 | | | | Heptachlor Epoxide | 0.048 | | | | gamma Chlordane | 0.021 | | ⊢R | | alpha-Chlordane | 0.0095 | 7 | | | trans-Nonachier | 0.010 | | -R | | 4,4'-DDE | 0.099 | | 1 | | Dieldrin | 0.015 | | -R | | 4,4'-DDD | 0.036 | | \ \ \ | | cis-Nonachlor | 0.018 | | | | 4.4' DDT | 0.019 | | R | | Hexabromobiphenyl | 0.020 | U | '`` | | Toxaphene | 0.20 | U | 1 | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma Chlordane alpha-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | (mg/Kg) | Comp/Kg | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40275F 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215584 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/13/94 Sulfur Clean-up: N SDG: _ | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | α | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | Ū | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.057 | 7 | | 1024-57-3 | Heptachlor Epoxide | 0.034 | | | 5103-74-2 | gamma-Chlordane | 0.018 | JN | | 5103-71-9 | alpha-Chlordane | 0.011 | | | 39765 80 5 | trans Nonachior | 0.014 | | | 72-55-9 | 4,4'-DDE | 0.10 | | | 60 57 1 | Dieldrin | 0.012 | | | 72-54-8 | 4,4'-DDD | 0.036 | | | 5103-73-1 | cis-Nonachlor | 0.018 | | | 50-29-3 | 4,4'-DDT | 0.017 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | Ú | | 8001-35-2 | Toxaphene | 0.20 | Ū | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 2.0
Lab Sample ID: 215622R1 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/25/94 Sulfur Clean-up: N SDG: | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |----------|------------|--------------------|-----------------------|----------|----| | | 2052-07-5 | 2-Bromobiphenyl | 0.020 | U 7 | | | | 2113-57-7 | 3-Bromobiphenyl | 0.020 | U.5 | | | | 92-66-0 | 4-Bromobiphenyl | 0.020 | UJ | | | | 118-74-1 | Hexachlorobenzene | 0.010 | UJ | | | | 58-89-9 | gamma-BHC | 0.010 | US | | | | 309-00-2 | Aldrin | 0.12 | J | | | | 1024-57-3 | Heptachlor Epoxide | 0.069 | 5 | | | | 5103-74-2 | gamma Chlordane | 0.034 | | -R | | | 5103-71-9 | alpha-Chiordane | 0.017 | 7 | | | | 39765-80-5 | trans Nonachior | 0.019 | | -R | | | 72-55-9 | 4,4'-DDE | 0.16 | J | | | \vdash | 60 57 1 | Dieldrin | 0.025 | | _£ | | | 72-54-8 | 4,4'-DDD | 0.052 | 7 | | | | 5103-73-1 | cis-Nonachlor | 0.024 | <u> </u> | | | | 50-29-3 | 4,4'-DDT | 0.031 | | -R | | Г | 36355-01-8 | Hexabromobiphenyl | 0.040 | UJ | | | | 8001-35-2 | Toxaphene | 0.40 | UT | | Lab Name: Aquatec, Inc. K40285F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40139 Lab Sample ID: 215586 Phase Type: Biota Date Received: 10/14/93 Client ID No. | | | Lab Sample IU: | 213300 | |------------------|---------|------------------|----------| | Phase Type: | Biota | Date Received: | 10/14/93 | | Phase Weight: | 10.0 g | Date Extracted: | 04/07/94 | | Extraction: | Soxhlet | Date Analyzed: | 05/10/94 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | • | | | COMPOUND | CONCENTRATION (mg/Kg) | Q | |--------------------|---|--| | 2-Bromobiphenyl | 0.010 | U | | 3-Bromobiphenyl | 0.010 | U | | 4-Bromobiphenyl | 0.010 | U | | Hexachlorobenzene | 0.0050 | U | | gamma-BHC | 0.0050 | U | | Aldrin | 0.057 | | | Heptachlor Epoxide | 0.030 | | | gamma-Chlordane | 0.018 | JN | | alpha-Chlordane | 0.0095 | | | trans Nonschlor | 0.011 | R | | 4,4'-DDE | 0.096 | | | Dieldrin | 0.012 | | | 4,4'-DDD | 0.044 | | | cis-Nonachlor | 0.017 | | | 4,4' DDT | 0.020 | | | Hexabromobiphenyl | 0.020 | U | | Toxaphene | 0.20 | U | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma-Chlordane alpha-Chlordane trans Nensehler 4,4'-DDE Dieldrin 4,4'-DDD eis-Nensehler 4,4'-DDT Hexabromobiphenyl | Comp/Kg | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40286F 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215588 Date Received: 10/14/93 Date Extracted: 04/07/94 Date Analyzed: 05/13/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | | |-----------------------|--------------------|--------------------------|------|----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.10 | -XEJ | | | 1024-57-3 | Heptachlor Epoxide | 0.066 | | | | -5103 74 2 | -gamma-Chlordane | 0.036 | | -R | | 5103-71-9 | alpha-Chlordane | 0.021 | | ! | | 39765-80-5 | trans Nonachior | 0.025 | | -R | | 72-55-9 | 4,4'-DDE | 0.17 | *EJ | | | 60 57 1 | Dieldrin | 0.025 | | ŀR | | 72-54-8 | 4,4'-DDD | 0.076 | | | | 5103-73-1 | cis-Nonachlor | 0.034 | I | Ì | | 50-29-3 | 4,4'-DDT | 0.033 | | HR | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | , | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40315F 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215590 Date Received: 10/14/93 Date Extracted: 04/07/94 Date Analyzed: 05/10/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|----|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.059 | 7 | | | 1024-57-3 | Heptachlor Epoxide | 0.026 | 7 | | | 5103-74-2 | gamma-Chiordane | 0.017 | NŢ | | | 5103-71-9 | alpha-Chlordane | 0.0067 | | _ | | 30765-80-5 | trans-Nonachlor | 0.0093 | | -R | | 72-55-9 | 4,4'-DDE | 0.070 | J | | | 60-57-1 | Dieldrin | 0.011 | | - K | | 72-54-8 | 4,4'-DDD | 0.026 | | • | | 5103-73-1 | cis-Nonachlor | 0.019 | | | | 50-29-3 | 4,4' DDT | 0.014 | | -R | | 36355-01-8 | Hexabromobiphenyi | 0.020 | U | • | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40316F 40139 N Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet 1.0 Dilution Factor: Lab Sample ID: 215592 SDG: Sulfur Clean-up: - Date Received: 10/14/93 Date Extracted: 04/07/94 Date Analyzed: 05/10/94 | CAS NO. | COMPOUND | CONCENTRATION | a | |------------|--------------------|---------------|------------| | | | (mg/Kg) | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.035 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.015 | | | 5103-74-2 | gamma-Chlordane | 0.015 | JN | | 5103-71-9 | alpha-Chlordane | 0.0050 | . U | | 39765-80-5 | trans-Nonachior | 0.0064 | | | 72-55-9 | 4,4'-DDE | 0.065 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.011 | J | | 5103-73-1 | eis-Nonechlor | 0.012 | | | 50 29 3 | 4,4' DDT | 0.016 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | Ū | | | | Cau Sample ID. | 213334 | |------------------|---------|------------------|----------| | Phase Type: | Biota | Date Received: | 10/14/93 | | Phase Weight: | 10.0 g | Date Extracted: | 04/07/94 | | Extraction: | Soxhlet | Date Analyzed: | 05/10/94 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | , – | | | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | a | |------------|--------------------|--------------------------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | υ | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.031 | J | | 1024-57-3 | Heptachlor Epoxide | 0.014 | | | 5103-74-2 | gamma-Chlordane | 0.0094 | NT | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.043 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.011 | | | 5103-73-1 | cis-Nonachlor | 0.0082 | JN: | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215604R1 Date Received: 10/14/93 Date Extracted: 04/07/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | | |------------|--------------------|--------------------------|-----|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | 07 | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | UJ | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | UJ | | | 118-74-1 | Hexachlorobenzene | 0.0050 | UJ | | | 58-89-9 | gamma-BHC | 0.0050 | UJ | | | 309-00-2 | Aldrin | 0.045 | | | | 1024-57-3 | Heptachlor Epoxide | 0.025 | | | | 5103-74-2 | gamma-Chlordane | 0.015 | JN | | | 5103-71-9 |
alpha-Chlordane | 0.0069 | 丁丁 | | | 39765-80-5 | trans-Nonachlor | 0.0073 | | R | | 72-55-9 | 4,4'-DDE | 0.066 | T | ' ' | | 60-57-1 | Dieldrin | 0.010 | UJ | | | 72-54-8 | 4,4'-DDD | 0.021 | 5 | | | 5103-73-1 | cis-Nonachlor | 0.013 | J J | | | 50-29-3 | 4,4'-DDT | 0.013 | | -6 | | 36355-01-8 | Hexabromobiphenyl | 0.020 | UJ | | | 8001-35-2 | Toxaphene | 0.20 | UJ | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. SDG: 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215606R1 Date Received: 10/15/93 Date Extracted: 04/07/94 Date Analyzed: 05/25/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|-----|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υJ | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | υJ | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | บปี | | | 118-74-1 | Hexachlorobenzene | 0.0050 | UJ | | | 58-89-9 | gamma-BHC | 0.0050 | UJ | | | 309-00-2 | Aldrin | 0.065 | 7 | | | 1024-57-3 | Heptachlor Epoxide | 0.034 | J | | | 5103-74-2 | gamma-Chiordane | 0.016 | | R | | 5103 71 0 | alpha Chlordane | 0.0076 | | R | | 39765-80-5 | trans-Nonachior | 0.0050 | UJ | ` | | 72-55-9 | 4,4'-DDE | 0.046 | 7 | 1 | | 60-57-1 | Dieldrin | 0.010 | リブ |] | | 72-54-8 | 4,4'-DDD | 0.013 | 5 | | | 5103-73-1 | cis-Nonachlor | 0.011 | NE |] | | 50 20 3 | 4,4'-DDT | 0.015 | | 1R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | LU |] | | 8001-35-2 | Toxaphene | 0.20 | UJ |] | ### MERCURY ANALYSES #### Introduction Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: #### Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). #### Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - Duplicate analysis not within control limits. - + Correlation coefficient for MSA is less than 0.995. #### Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### **Data Assessment** #### 1. Holding Time The recommended holding times for mercury analyses is 28 days from tissue homogenization. All samples were analyzed within this holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. #### 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. #### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. #### 3.3 CRDL Standard One of the CRDL recoveries was above acceptable limits. No data fell in the affected range; therefore, no data qualification was necessary. #### 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. #### 4.1 Matrix spike Recovery for the matrix spike was within acceptable limits. #### 4.2 Laboratory Duplicate The laboratory duplicate relative percent difference (RPD) was within acceptable limits. #### 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. #### 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. #### 7. Furnace QC No furnace analyses were performed. #### 8. Method of Standard Additions (MSA) No MSA were performed. #### 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. **Data Validation Checksheets** | | YES | NO | NA | |--|----------|----|----------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | <u>X</u> | | | | Are the sample numbers included in the narrative? | x | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | X | | | | Sample No.? | <u> </u> | | | | SDG No.? | <u> </u> | | | | Correct units? | X | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | Is the distillation log for mercury present? | X | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP | | | X | | Flame AA | | | <u> </u> | | Furnace AA | | | X | | Mercury | X | | | | Cyanides | | | X | | Is the data legible? | X | | | | Is the data properly labeled? | X | | | | Holding Times | | | | | Were mercury analyses performed within 28 days? | X | | | | | YES | NO | NA | |---|-------------|-------------|-------------| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | | | Are all forms complete? | X | | | | Are correct units indicated on Form I's? | X | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | X | | | | Was a brief physical description of samples given on Form I's? | | X | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | | | X | | is a record of 5 point calibration present for Hg analysis? | . <u> </u> | | | | Is a record of 4 point calibration present for: | | | | | Flame AA? | | | X | | Furnace AA? | | | X | | Cyanides? | | | X | | Is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | · X | | Is correlation coefficient less than .995 for: | | | | | Mercury Analysis? | X | | | | Cyanide Analysis? | | | X | | Atomic Absorption Analysis? | | | X | | Form II A (initial and Continuing Calibration Verifica | tion) | | | | Present and complete for every metal and cyanide? | X | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | <u> </u> | | Hg (80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | × | | | YES | NO | NA_ | |--|-----|--|-----| | Was continuing calibration performed every 10 samples or every 2 hours? | X | <u> </u> | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Wàs a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | X | | Was a mid-range calibration verification standard distilled and analyzed for cyanide
analysis? | | | X | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | | X | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | X | | Form III (Initial and Continuing Calibration Blanks) | | | | | Present and complete? | X | | | | Was an initial calibration blank analyzed? | × | | | | Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)? | X | | | | Are all calibration blanks (when IDL < CRDL) less than or equal to the Contract Required Detection Limits (CRDLs)? | | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | X | | Form III (Preparation Blank) | | | | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | x | <u>. </u> | | | each batch of digested samples? | x | | | | each matrix type? | | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | × | | | | YES | NO | NA | |--|------------|---------|----| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | X | | Is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | × | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | | | | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | X | | Are all Interference Check Sample results inside the control limits (±20%)? | | | X | | If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | × | | Form V A (Spiked Sample Recovery - Pre-Digestion/F | Pre-Distil | iation) | | | Present and complete for: | | | | | each SDG? | X | | | | each matrix type? | X | | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | X | | | | If no, is sample concentration greater than or equal to four times spike concentration? | | | X | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | | | X | | Are any spike recoveries: | | | | | less than 10%? | | X | | | between 10-74%? | | X | | | between 126-200%? | | X | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | | | | Present and complete for: | | | | | each SDG? | X | | | | | | | | | | YES | NO | NA | |---|-----|-----|----------| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | X | | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | X | | | | If no, are all results outside the control limits flagged with an * on Form I's and VI? | | | × | | Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | . X | | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | | X | | Form VII (Laboratory Control Sample) | | | | | Was one LCS prepared and analyzed for: | | | | | each SDG? | X | | | | each batch samples digested/distilled? | X | | | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | Is LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | · | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | X | | each matrix type? | | | X | | Was field blank(s) used for Serial Dilution Analysis? | | | X | | Are results outside control limit flagged with an "E"" on Form I's and Form IX when initial concentration of Form IX is equal to 50 times IDL or greater. | | | X | | Are any % difference values: | | | · | | > 10%? | | | X | | ≥100%? | | | × | | Furnace Atomic Absorption (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | X | | | | | | | | YES | NO | NA | |--|------|----------|----| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | | · | X | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X | | is analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | | | | Present? | | X | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | X | | Was MSA required for any sample but not performed? | | X | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | | x | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | X | | Field Blank | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | X | | Form X, XI, XII (Verification of Instrumental Parameter | ers) | | | | Is verification report present for : | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation Factors (annually)? | | | X | | ICP Linear Ranges (quarterly)? | | | X | | Form X (Instrument Detection Limits) | | <u> </u> | | | Are IDLs present for: | | | | | all the analytes? | X | | | | all the instruments used? | X | | | | | YES | NO | NA. | |---|-----|----|-----| | is IDL greater than CRDL for any analyte? | | X | | | If yes, is the concentration of Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than 5 x IDL. | | | X | | Was any sample result higher linear range of ICP. | | | X | | Was any sample result higher than the highest calibration standard for non-ICP parameters? | | X | | | If yes for any of the above, was the sample diluted to obtain the result on Form !? | | | × | | | | | | Corrected Sample Analysis Data Sheets ### U.S. EPA - CLP # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INORGANIC . | Analyses data | SHEET | | |----------------|---------------------------|------------------------|-----------------|----------|-------------------| | o Name: AQUA | : AQUATEC Contract: 91082 | | | K40268F | | | Lab Code: AQUA | I Ca | se No.: BI | O SAS No. | : | _ SDG No.: 40139_ | | | | | | | mple ID: 215570 | | Matrix (soil/w | vater): risn | | | Tan Sa | mple 10. 213370 | | Level (low/med | l): LOW_ | | | Date R | eceived: 10/13/93 | | % Solids: | 100. | 0 | | | | | · Co | ncentration | Units (ug | /L or mg/kg dry | y weigh | t): MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | - NR | | | 7440-36-0 | Antimony_ | | | NR | | | 7440-38-2 | Arsenic | | _ | NR | | | 7440-39-3
7440-41-7 | Barium
Beryllium | | - | NR
NR | | • | 7440-41-7 | Cadmium | | - | $-\frac{NR}{NR}$ | | | 7440-70-2 | Calcium | | - | - NR | | | 7440-47-3 | Chromium | | - | - NR | | | 7440-48-4 | Cobalt - | | - | NR | | | 7440-50-8 | Copper | | | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | l-l | NR NR | | | 7439-95-4
 7439-96-5 | Magnesium
Manganese | | | NR
NR | | | 7439-97-6 | Mercury | 0.10 | - | - cv | | | 7440-02-0 | Nickel - | | - | NR | | • | 7440-09-7 | Potassium | | - | NR | | • | 7782-49-2 | | | | NR | | | 7440-22-4 | | | _ | NR | | | 7440-23-5 | Sodium | | - | NR NR | | | 7440-28-0
7440-62-2 | Thallium_
Vanadium | | - | NR
NR | | | 7440-62-2 | Zinc Zinc | | - | - NR | | | | Cyanide | | - | - NR | | | | | | | | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | FORM I - IN ILM02.1 ## INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | LOW | its (ug nalyte uminum_ timony_ senic_ rium ryllium licium romium_ oalt_ oper | /L or mg/kg o | o.: | Lab
Date | Sampl
Rece | SDG e ID: ived: MG/I M NR N | : 2155°
: 10/1 | 40139 _. | |--|--|---
--|--------------------|--|--|--|--| | Case 1 : FISH_ LOW | its (ug nalyte uminum_ timony_ senic_ rium ryllium licium romium_ oalt_ oper | /L or mg/kg o | I
dry | Cab
Date
Wei | Sampl
Rece | MG/I | : 2155°
: 10/1 | 72 | | LOW | its (ug | /L or mg/kg (| I
dry | Cab
Date
Wei | Sampl
Rece | MG/I | : 2155°
: 10/1 | 72 | | 100.0 ration Uni No. Ar -90-5 -36-0 Ant -38-2 Ars -39-3 Bar -41-7 Ber -43-9 Cad -70-2 Cal -47-3 Chr -50-8 Cop | nalyte uminum_ timony_ senic_ rium_ ryllium dmium_ lcium_ romium_ oalt_ oper | Concentration | dry | wei | ght): | MG/I
M
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR | · | 3/93 | | No. Ar
-90-5 Alu
-36-0 Ant
-38-2 Ars
-39-3 Bar
-41-7 Cad
-70-2 Cal
-43-9 Cal
-70-2 Chr
-48-4 Coh
-50-8 Cop | nalyte uminum_ timony_ senic_ rium_ ryllium dmium_ lcium_ romium_ oalt_ oper | Concentration | | т | Q | M
NR
NR
NR
NR
NR
NR
NR
NR | k G | | | No. Ar
-90-5 Alu
-36-0 Ant
-38-2 Ars
-39-3 Bar
-41-7 Ber
-43-9 Cad
-70-2 Cal
-47-3 Chr
-48-4 Coh | nalyte uminum_ timony_ senic_ rium_ ryllium dmium_ lcium_ romium_ oalt_ oper | Concentration | | т | Q | M
NR
NR
NR
NR
NR
NR
NR
NR | K G | | | -90-5 Alu-36-0 Ant -38-2 Ars -39-3 Bar -41-7 Cad -70-2 Cal -47-3 Chr -50-8 Cop | uminum_timony_senic_rium_ryllium lmium_lcium_romium_oalt_ | | on 0 | | | NR
NR
NR
NR
NR
NR
NR
NR | | | | -36-0 Ant -38-2 Ars -39-3 Bar -41-7 Ber -43-9 Cad -70-2 Cal -47-3 Chr -48-4 Coh | timony_ senic_ rium_ ryllium dmium_ lcium_ romium_ oalt oper_ | | | | | NR
NR
NR
NR
NR
NR
NR | | | | -36-0 Ant -38-2 Ars -39-3 Bar -41-7 Ber -43-9 Cad -70-2 Cal -47-3 Chr -48-4 Coh | timony_ senic_ rium_ ryllium dmium_ lcium_ romium_ oalt oper_ | | | | | NR
NR
NR
NR
NR
NR
NR | | | | -38-2 Ars
-39-3 Bar
-41-7 Ber
-43-9 Cad
-70-2 Cal
-47-3 Chr
-48-4 Cob
-50-8 Cop | senic_ rium ryllium dmium_ lcium romium oalt_ oper | | | | | NR
NR
NR
NR
NR | | | | -41-7 Ber
-43-9 Cad
-70-2 Cal
-47-3 Chr
-48-4 Coh | ryllium dmium_ lcium_ romium_ oalt oper_ | | | | | NR
NR
NR
NR | | | | -43-9 Cad
-70-2 Cal
-47-3 Chr
-48-4 Cob
-50-8 Cop | dmium_
lcium_
romium_
palt
oper | | | | | NR
NR
NR
NR | | | | -70-2 Cal
-47-3 Chr
-48-4 Cob
-50-8 Cop | lcium_
romium_
palt
pper | | | | | NR
NR
NR | | | | -47-3 Chr
-48-4 Cob
-50-8 Cop | romium_
palt_
pper_ | | | | | NR
NR | | | | -48-4 Cob
-50-8 Cop | palt | | _ - | | | NR | | | | -50-8 Cop | per | | | | [| | • | | | | | | | 1 | | NR | | | | | | | | - | | NR | • | | | -92-1 Lea | | | - | - | | NR | | | | | nesium | | - | - | } | NR | | | | | nganese | | - | - | | NR | • • • | | | | cury | 0.0 | 09 - | - | | CV | | | | -02-0 Nic | ckel | | _ | | | NR | | | | | | | _ | | | | | | | | | | 1- | _ | | | | | | | | | | _ | | | | | | | | | | - | | | | | | | | | | -1 | | | | | | | | | | -] | | | | | | | | | | - | | | | | | | | | [- | -[| | MA | | | | | Clarit | ty Before: _ | | | | Text | ure: | | | | Clarit | ty After: _ | | <u> </u> | | Arti: | facts: | | | | | | | | | | | | | | -02-0 Nic
-09-7 Pot
-49-2 Sel
-22-4 Sil
-23-5 Soc
-28-0 That
-62-2 Var
-66-6 Zir
Cya | Nickel -09-7 Potassium -49-2 Selenium -22-4 Silver -23-5 Sodium -28-0 Thallium -62-2 Vanadium - Zinc - Cyanide - Clarie | Nickel Potassium Selenium Selenium Potassium P | -02-0 Nickel | -02-0 Nickel -09-7 Potassium -49-2 Selenium -22-4 Silver -23-5 Sodium -28-0 Thallium -62-2 Vanadium -66-6 Zinc | -02-0 Nickel -09-7 Potassium -49-2 Selenium -22-4 Silver -23-5 Sodium -28-0 Thallium -62-2 Vanadium -66-6 Zinc -Cyanide Clarity Before: | -02-0 Nickel NR -09-7 Potassium NR -49-2 Selenium NR -22-4 Silver NR -23-5 Sodium NR -28-0 Thallium NR -62-2 Vanadium NR -66-6 Zinc NR -Cyanide Text | O2-0 Nickel NR O9-7 Potassium NR A49-2 Selenium NR O22-4 Silver NR O23-5 Sodium NR O28-0 Thallium NR O62-2 Vanadium NR OCyanide NR Clarity Before: Texture: | FORM I - IN ## 1 INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |------------|--------|-----| |------------|--------|-----| | | | THOUGHNIC Y | WANTIDED DUTU | 21100+ | l ———————————————————————————————————— | |---------------|------------------------|---------------------|-----------------|-------------|--| | Nome: AOII | y w E C | | Contract: 93 | 1082 | K40270F | | | | | | | · | | ab Code: AQU | AI_ Ca | se No.: BI | SAS No. | · | SDG No.: 40139 | | atrix (soil/ | water): FISH | | | Lab Samp | ole ID: 215574 | | evel (low/med | d): LOW_ | _ | | Date Rec | eived: 10/13/93 | | Solids: | 100. | 0 | | | | | C | oncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | NR | | | 7440-36-0 | Antimony | | | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium - | | | NR | | | 7440-41-7 | Beryllium | | | NR | | | 7440-43-9 | Cadmium_ | | | NR | | | 7440-70-2 | | | | NR | | | 7440-47-3 | Chromium | | | NR | | | 7440-48-4 | Cobalt | | | NR | | | 7440-50-8 | Copper | | | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | - | NR | | | 7439-95-4 | Magnesium | | - | NR | | • | 7439-96-5 | Manganese | | - | NR | | | 7439-97-6 | Mercury | 0.13 | _ - | CV | | | 7440-02-0
7440-09-7 | Nickel
Potassium | | | - NR | | | 7782-49-2 | Selenium | | | NR NR | | | 7440-22-4 | Silver | | | - NR | | | 7440-23-5 | Sodium | | - | - NR | | | 7440-28-0 | Thallium | | - | NR | | | 7440-62-2 | Vanadium_ | | - | NR | | | 7440-66-6 | Zinc | | - | NR | | | | Cyanide | | - | NR | | | | | | | | | olor Before: | | Clarit | y Before: | | Texture: | | olor After: | | Clarit | y After: | | Artifacts: | | omments: | | | | | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | | | | · | |----------------|-------------------------|-------------------|-----------------|-----------|------------------| | ab Name: AQUA | TEC | • | Contract: 9 | 1082 | K40271F | | | | _ | SAS No. | • | SDG No.: 40139_ | | Matrix (soil/w | | | | | ole ID: 215576 | | Tana) (1an/mad | \. TOW | | | Data Pac | ceived: 10/13/93 | | Level (low/med |): LOW | | | Date Rec | .e.veu. 10/13/93 | | % Solids: | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | , | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | NR | | | 7440-36-0 | Antimony - | | | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3
7440-41-7 | Barium Beryllium | | | NR
NR | | | 7440-41-7 | | | - | - NR | | | 7440-70-2 | | | - | NR | | | 7440-47-3 | Chromium | | | NR | | ; | 7440-48-4 | Cobalt | | | NR | | | 7440-50-8 | Copper | | | NR | | | 7439-89-6 | Iron | | _ - | NR | | | 7439-92-1
 7439-95-4 | Lead
Magnesium | | - | NR
NR | | <u>.</u> | 7439-95-4 | Manganese | | - | - NR | | | 7439-97-6 | Mercury | 0.08 | - | - cv | | | 7440-02-0 | Nickel | | - | NR) | | | 7440-09-7 | Potassium | | | NR | | • | 7782-49-2 | Selenium_ | | | NR |
 | 7440-22-4 | Silver | | | NR | | | 7440-23-5
7440-28-0 | Sodium | | - | NR
NR | | | 7440-62-2 | Vanadium | | | - NR | | | 7440-66-6 | Zinc | | - | NR | | | [| Cyanide | | | NR | | | l | | | | _ | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | | | | | | | | FORM I - IN ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | INONGMITC I | WALISES DAIR S | 1111111 | | |-------------------------|------------------------|-----------------|-----------------|------------------| | None ACHAREC | | Contract: 91 | 1082 | K40272F | | o Name: AQUATEC | · | Concrace. 7. | | - | | ab Code: AQUAI_ Ca | ase No.: BIO | SAS No.: | <u> </u> | SDG No.: 40139 | | atrix (soil/water): FIS | <u>-</u> | | Lab Samp | ple ID: 215578 | | evel (low/med): LOW_ | | | Date Red | ceived: 10/13/93 | | Solids: 100 | . 0 | | | | | Concentration | units (ug | /L or mg/kg dry | y weight) | : MG/KG | | CAS No. | Analyte | Concentration | C Q | м | | 7429-90-5 | Aluminum | | | - NR | | 7440-36-0 | | | - | NR | | 7440-38-2 | | | | NR | | 7440-39-3 | Barium | | |]NR] | | 7440-41-7 | | | | NR | | 7440-43-9 | | | | NR | | 7440-70-2 | | | | NR | | 7440-47-3 | | | | NR | | 7440-48-4 | 1 | | | NR | | 7440-50-8 | Copper | | | NR | | 7439-89-6 | Iron | | | NR | | 7439-92-1 | Lead | | - | NR | | 7439-95-4
7439-96-5 | Magnesium
Manganese | | _ | NR
NR | | 7439-98-5 | Mercury | 0.06 | | - CV | | 7440-02-0 | Nickel - | | | - NR | | 7440-09-7 | Potassium | | - | - NR | | 7782-49-2 | Selenium | | - | NR | | 7440-22-4 | Silver | | - - | NR | | 7440-23-5 | | | - | NR | | 7440-28-0 | Thallium | | - | NR | | 7440-62-2 | Vanadium | | - | NR | | 7440-66-6 | Zinc - | | [| NR | | | Cyanide | | | NR | | \ | . 1 | l | l _ l | _ | | olor Before: | Clarit | cy Before: | - | Texture: | | olor After: | Clarit | y After: | | Artifacts: | | omments: | | | | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INONGALIC . | WINDIDED DATA | J1121212 | | |----------------|------------------------|-----------------------|-----------------|-------------|-----------------| | b Name: AQUA | ATEC | | Contract: 9 | 1082 | K40273F | | _ | | | | | SDG No.: 40139_ | | Matrix (soil/v | _ | | | | le ID: 215580 | | (, | • | - | | _ | | | Level (low/med | l): LOW_ | _ | | Date Rec | eived: 10/13/93 | | % Solids: | 100. | 0 | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y weight): | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | NR | | | 7440-36-0 | Antimony | | - | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium | | | NR | | | 7440-41-7 | Beryllium | | | NR | | | 7440-43-9 | Cadmium | | | NR | | | 7440-70-2 | Calcium | | | NR | | | 7440-47-3 | Chromium_ | | | NR | | | 7440-48-4
7440-50-8 | Cobalt | | | NR
NR | | | 7439-89-6 | Copper | | | NR | | | 7439-92-1 | Lead | | | NR | | • | 7439-95-4 | Magnesium | | | NR - | | | 7439-96-5 | Manganese | | - | NR | | | 7439-97-6 | Mercury | 0.03 | | cv | | | 7440-02-0 | Nickel | | | NR | | | 7440-09-7 | Potassium | | | NR | | • | 7782-49-2 | Selenium_ | | _ | NR | | | 7440-22-4 | Silver | | | NR | | | 7440-23-5 | Sodium | | | NR | | | 7440-28-0
7440-62-2 | Thallium_
Vanadium | | - | NR
NR | | | 7440-62-2 | Zinc | | - | NR NR | | | 7440 00 0 | Cyanide | | | NR | | | | | | | | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | | | | | | | | ### 1 INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | A Names BOUR | nec. | | Contract: 93 | ı na | 19 | K40274F | |-----------------|-------------|--------------|---------------------------------------|------|-------------|---------------------------------------| | علم Name: AQUAT | | | | | | CDC No. | | Lab Code: AQUAI | Ca | se No.: BI | SAS No. | : _ | | SDG No.: 40139 | | Matrix (soil/wa | ter): FISH | _ | · | La | b Samp] | le ID: 215582 | | Level (low/med) | : LOW_ | | | Da | te Rece | eived: 10/13/93 | | Solids: | 100. | 0 | | | | | | Con | ncentration | Units (ug | /L or mg/kg dry | 7 W | reight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony | | - | | NR
NR | | | 7440-38-2 | Arsenic | | - | | NR | | | 7440-39-3 | Barium | | - | | NR | | | 7440-41-7 | | | - | | NR | | | 7440-43-9 | Cadmium | | - | | NR | | | 7440-70-2 | Calcium | | - | | NR | | 1 | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | | | - | | NR | | | 7440-50-8 | | | - | | NR | | | 7439-89-6 | Iron | | -1 | | NR | | | 7439-92-1 | Lead | | - | | NR | | | 7439-95-4 | Magnesium | · · · · · · · · · · · · · · · · · · · | -1 | | NR | | | 7439-96-5 | Manganese | | | | NR | | | 7439-97-6 | Mercury | 0.05 | - | | CV | | 1 | 7440-02-0 | Nickel - | | | | NR | | | 7440-09-7 | Potassium | | - | | NR | | | 7782-49-2 | Selenium | | - | | NR | | | 7440-22-4 | | | - | | NR | | L. | 7440-23-5 | Sodium | | - | | NR | | 1 | 7440-28-0 | Thallium | | - | | NR | | | 7440-62-2 | Vanadium - | | - | | NR | | · · | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide_ | | | | NR | | | | | | | | | | olor Before: | | Clarit | y Before: | | • | Texture: | | olor After: | | Clarit | y After: | | _ | Artifacts: | | omments: | | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | · | | | | | | | | | FORM I - IN ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INORGANIC ' | ANALYSES DATA : | DUTET | | |-----------------------|------------------------|------------------|-----------------|-----------|-----------------| | _ab Name: AQUA | ТЕС | | Contract: 91 | 1082 | K40275F | | | | | | | | | Lab Code: AQUA | I_ Ca | se No.: BI | SAS No. | | SDG No.: 40139_ | | Matrix (soil/w | ater): FISH | _ | | Lab Samp | le ID: 215584 | | Level (low/med |): LOW_ | | | Date Rec | eived: 10/13/93 | | <pre>\$ Solids:</pre> | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | NR | | | 7440-36-0 | Antimony_ | | | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium | | | NR | | | 7440-41-7 | Beryllium | | | NR | | | 7440-43-9 | CadmiumCalcium | | - | NR
NR | | | 7440-70-2
7440-47-3 | Chromium | | - | NR NR | | | 7440-48-4 | Cobalt | | | NR | | | 7440-50-8 | Copper | | - | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | | NR | | | 7439-95-4 | Magnesium | | - | NR | | | 7439-96-5 | Manganese | | | NR . | | | 7439-97-6 | Mercury | 0.03 | | CV | | | 7440-02-0 | Nickel | | | NR | | | 7440-09-7 | Potassium | | | NR | | | 7782-49-2 | Selenium_ | | _ | NR | | | 7440-22-4
7440-23-5 | Silver
Sodium | | | NR | | | 7440-23-5 | Thallium | | - | NR
NR | | | 7440-62-2 | Vanadium_ | | | NR | | | 7440-66-6 | Zinc | | - | NR | | | | Cyanide | | | NR | | | | | | | 1_1 | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | سے Name: AQUA | TEC | | Contract: 93 | 1082 | K40284F | | | |---|---|--|---------------|--------------|---|--|--| | Lab Code: AQUA | I_ Ca | se No.: BIO | SAS No.: | · | SDG No.: 40139_ | | | | Matrix (soil/w | ater): FISH | - | | Lab Sampl | e ID: 215622 | | | | Level (low/med |): LOW_ | - | | Date Rece | eived: 10/13/93 | | | | % Solids: | 100. | 0 | | | | | | | Concentration Units (ug/L or mg/kg dry weight): MG/KG | | | | | | | | | | CAS No. | Analyte | Concentration | C Q | м | | | | | 7429-90-5 7440-36-0 7440-38-2 7440-39-3 7440-41-7 7440-43-9 7440-47-3 7440-48-4 7440-50-8 7439-92-1 7439-95-4 7439-95-4 7439-97-6 7440-02-0 7440-02-0 7440-22-4 7440-23-5 7440-28-0 7440-66-6 | Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
N | | | | Color Before: | | Clarit | y Before: | , | Texture: | | | | Color After: | | Clarit | y After: | | Artifacts: | | | | Comments: | | · · · · · · · · · · · · · · · · · · · | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUATEC | C | | Contract: 91 | L082 | K40285F | | | | |---|---|---|---------------|-------------|---|--|--|--| | Lab Code: AQUAI_ | Cas | se No.: BIO | D SAS No.: | | SDG No.: 40139_ | | | | | Matrix
(soil/wate | Matrix (soil/water): FISH_ Lab Sample ID: 215586 | | | | | | | | | Level (low/med): LOW Date Received: 10/14/93 | | | | | | | | | | % Solids: | 100.0 |) | | | | | | | | Concentration Units (ug/L or mg/kg dry weight): MG/KG | | | | | | | | | | . CA | AS No. | Analyte | Concentration | C Q | м | | | | | 74
74
74
74
74
74
74
74
74
74
74
74
74
7 | 40-38-2
40-39-3
40-41-7
40-43-9
40-70-2
40-47-3
40-48-4
40-50-8
39-89-6
39-92-1
39-95-4
39-95-4
39-96-5
39-97-6
40-02-0
40-09-7
82-49-2
40-23-5
40-28-0
40-62-2
40-66-6 | Aluminum_ Antimony_ Arsenic_ Barium_ Beryllium Cadmium_ Calcium_ Chromium_ Cobalt_ Copper_ Iron_ Lead_ Magnesium Manganese Mercury_ Nickel Potassium Selenium_ Silver_ Sodium_ Thallium_ Vanadium_ Zinc_ Cyanide_ | 0.06 | - | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
N | | | | | Color Before: | | Clarit | y Before: | | Texture: | | | | | Color After: | | Clarit | y After: | | Artifacts: | | | | | Comments: | | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|------| | | | 110- | | ⊸ab Name: AQUA | TEC | • | Contract: 91 | L082 | K40286F | |----------------|-------------|--------------|-----------------|-------------|-------------------| | | | so No : PT | O SAS NO | , | SDG No.: 40139 | | Lab Code: AQUA | .1_ Ca | se no bi | J SAS NO. | · ——— | 3DG NO 40139 | | Matrix (soil/w | ater): FISH | - | | Lab Samp | ole ID: 215588 | | Level (low/med |): LOW_ | - | | Date Rec | ceived: 10/14/93 | | Solids: | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | -[| - NR | | | 7440-36-0 | Antimony |] | - | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium - | | | NR | | | 7440-41-7 | Beryllium | | - | - NR | | | 7440-43-9 | | | | NR | | | 7440-70-2 | Calcium | | | NR | | | 7440-47-3 | Chromium | | _ | NR | | | 7440-48-4 | Cobalt | | _ | NR | | | 7440-50-8 | Copper | | - | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | · · | NR | | | 7439-95-4 | Magnesium | | | NR | | | 7439-96-5 | Manganese | | | NR | | | 7439-97-6 | Mercury | 0.12 | - | - cv | | | 7440-02-0 | Nickel | | | NR | | | 7440-09-7 | Potassium | | | NR | | • | 7782-49-2 | Selenium_ | | | NR | | | 7440-22-4 | | | | NR | | | 7440-23-5 | Sodium | | | NR | | • | 7440-28-0 | Thallium | | | NR | | | 7440-62-2 | Vanadium_ | | | NR | | | 7440-66-6 | Zinc | | _ | NR | | | | Cyanide | | | NR | | | I | l | | _1_1 | _ l l | | color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | omments: | | | | | | FORM I - IN ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | THOMOTOTE . | anibiodo billi. | J | · | |----------------|------------------------|----------------------|---------------------------------------|----------------|------------------| | ه Name: AQU | ATEC | | Contract: 9: | 1082 | K40315F | | | | an No a DT | | | SDC No + 40120 | | Lab Code: AQUA | AI_ Ca | se No.: DI | SAS NO. | • | SDG No.: 40139_ | | Matrix (soil/ | water): FISH | _ | | Lab Sam | ple ID: 215590 | | Level (low/med | i): LOW_ | _ | | Date Re | ceived: 10/14/93 | | % Solids: | 100. | 0 | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y weight |): MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | | | - | NR | | | 7440-36-0 | Antimony_ | | _ | NR | | | 7440-38-2
7440-39-3 | Arsenic
Barium | | _ | NR
NR | | | 7440-39-3 | Beryllium | | - | - NR | | | 7440-43-9 | Cadmium | | - | - NR | | | 7440-70-2 | Calcium | | - | - NR | | | 7440-47-3 | Chromium | | - | NR | | | 7440-48-4 | Cobalt | | | NR | | | 7440-50-8 | Copper | | | _ NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | [<u>-</u> - | NR | | | 7439-95-4
7439-96-5 | Magnesium | | - | NR
NR | | | 7439-98-5 | Manganese
Mercury | 0.08 | - | - CV | | | 7440-02-0 | Nickel - | | - | - NR | | | 7440-09-7 | Potassium | | - | NR | | | 7782-49-2 | Selenium | · · · · · · · · · · · · · · · · · · · | - | NR | | | 7440-22-4 | Silver - | | - | NR NR | | | 7440-23-5 | Sodium | | | _ NR | | | 7440-28-0 | Thallium_ | | | NR | | | 7440-62-2 | Vanadium_ | | _ | NR | | | 7440-66-6 | Zinc | | - | NR NR | | | | Cyanide | | - | _ NR | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | ty After: | | Artifacts: | | Comments: | | | | | | | | | | | | | FORM I - IN | | | NALYSES DATA SHEET | | | EPA SAMPLE NO. | | | |--|-------------|--|-----------------|--|----------------|---|------| | → Name: AOUA | TEC | | Contract: 91 | 1082 | 2 | K40316F | | | Lab Code: AQUAI_ Case No.: BIO_ SAS No.: | | | | | | CDC No | ' | | Lab Code: AQUA | I_ Ca | se No:: RIG | SAS NO. | · _ | | SDG NO.: 40 | 139_ | | Matrix (soil/wa | ater): FISH | _ | | Lab | Samp] | le ID: 215592 | | | Level (low/med |): LOW_ | _ | | Dat | te Rece | eived: 10/14/ | 93 | | % Solids: | 100. | o | | | | | | | Con | ncentration | Units (ug | /L or mg/kg dry | y We | eight): | MG/KG | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | 7429-90-5 | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver | | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
N | | | Color Before: | | Clarit | y Before: | <u>. </u> | | Texture: | | | Color After: | | Clarit | y After: | | | Artifacts: _ | | | Comments: | | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET | Name AOII | AMEC | 4 | Contract: 91 | 1082 | | K40317F | |---------------|--------------|---------------------|-----------------|----------|-------------|----------------| | | | | | | | SDG No.: 40139 | | | | | OND NOT | | | | | atrix (sòil/ | water): FISH | | | Lab | Sampl | e ID: 215594 | | evel (low/med | d): LOW_ | - | | Dat | e Rece | ived: 10/14/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | 1 | T | | | | —, | | | CAS No. | Analyte | Concentration | c | Q | M | | | 7429-90-5 | Aluminum | | - - | | NR | | | | Antimony | | - - | | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium | | - - | | NR | | | 7440-41-7 | Beryllium | | | | NR | | | 7440-43-9 | Cadmium_ | | | | NR | | | 7440-70-2 | Calcium_ | | | | NR | | | 7440-47-3 | Chromium_ | | _ _ | | NR | | | 7440-48-4 | Cobalt | | _ _ | | NR | | | 7440-50-8 | Copper | | _ _ | | NR | | | 7439-89-6 | Iron | | _ _ | | NR | | | 7439-92-1 | Lead | | - | | NR | | _ | 7439-95-4 | Magnesium | | - - | | NR . | | | 7439-96-5 | Manganese | 0.09 | - - | | NR | | | 7439-97-6 | Mercury | 0.09 | - - | | CV NR | | | | Nickel
Potassium | | - - | | NR NR | | | ■ * | Selenium | | - - | | NR | | | | Silver | | - - | | NR | | | | Sodium | | - - | | NR | | | | Thallium | | - - | | NR | | | | Vanadium | | - - | | NR | | | 7440-66-6 | Zinc | · | - - | | NR | | | | Cyanide | | - - | | NR | | | | | | | | | | lor Before: | | Clarit | cy Before: | <u> </u> | | Texture: | | lor After: | | Clarit | ty After: | | | Artifacts: | | mments: | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUATEC | | | Contract: 91082 | | | K40322F | | |-----------------|------------------------|-----------------------|-----------------|-----|----------|----------------|--| | Lab Code: AQUA | | | | | | SDG No.: 40139 | | | Lab Code: Agua. | | SC NOTE DI | | | | | | | Matrix (soil/wa | ater): FISH | _ | | La | b Sample | e ID: 215604 | | | Level (low/med) |): LOW_ | _ | | Da | te Rece | ived: 10/14/93 | | | % Solids: | 100. | 0 | | | | | | | Cor | ncentration | Units (ug | /L or mg/kg dry | , w | eight): | MG/KG | | | | CAS No. | Analyte | Concentration | С | Q 1 | м | | | | 7429-90-5 | Aluminum | | - | ——— [] | NR | | | | | Antimony - | | - | | NR | | | | 7440-38-2 | Arsenic | | | | NR | | | ļ | 7440-39-3 | Barium | | | | NR | | | | 7440-41-7 | Beryllium | | _ | | NR | | | | 7440-43-9 | Cadmium_ | | _ | | NR
NR | | | | 7440-70-2
7440-47-3 | Calcium Chromium | | _ | | NR NR | | | | | Cobalt | | - | | NR | | | | 7440-50-8 | Copper | | - | | NR | | | | 7439-89-6 | Iron | | - | | NR | | | | 7439-92-1 | Lead | | - | | NR | | | | 7439-95-4 | Magnesium | | -1 | | NR . | | | _ | 7439-96-5 | Manganese | | | | NR - | | | | 7439-97-6 | Mercury | 0.07 | | | CV | | | | 7440-02-0 | Nickel | | | | NR | | | | | Potassium | | _ | | NR | | | • | | Selenium_ | | _ | | NR | | | | | Silver | | _ | | NR · | | | | | Sodium | . ————— | _ | | NR
NR | | | | | Thallium_
Vanadium | | - | | NR NR | | | | 7440-62-2 | Zinc | | | | NR NR | | | | 7440 00 0 | Cyanide | | | | NR | | | | | | | | | | | | Color Before: | | Clarit | cy Before: | | | Texture: | | | Color After: | | Clarit | ty After: | | | Artifacts: | | | Comments: | | | | | | | | ### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUA | TEC | | Contract: 9 | 1082 | K40325F | |----------------|--|--|----------------|-------------
--| | _ | | | | | SDG No.: 40139_ | | Matrix (soil/w | ater): FISH | _ | · | Lab Sampl | e ID: 215606 | | Level (low/med |): LOW_ | . | | Date Rece | eived: 10/15/93 | | % Solidș: | 100. | 0 | | | | | Co | ncentration | Units (ug/ | L or mg/kg dry | y weight): | MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7440-41-7
7440-43-9
7440-70-2
7440-47-3
7440-48-4
7440-50-8
7439-89-6
7439-92-1
7439-95-4
7439-96-5 | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc | 0.12 | | NR N | | | | Cyanide | | | NR | | Color Before: | | | y Before: | • | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | FORM I - IN ### MISCELLANEOUS PARAMETERS ## PESTICIDE, PBB ANALYSIS DATA SHEET Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. 40139 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 215576R1 Date Received: 10/13/93 Date Extracted: 04/07/94 Date Analyzed: 05/24/94 Sulfur Clean-up: N SDG: | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |---|------------|--------------------|-----------------------|-----|----| | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | UJ | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | UJ | | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | リナ | | | | 118-74-1 | Hexachlorobenzene | 0.0050 | UJ | | | | 58-89-9 | gamma-BHC | 0.0050 | d d | | | | 309-00-2 | Aldrin | 0.045 | ナ | | | | 1024-57-3 | Heptachlor Epoxide | 0.023 | 7 | | | | 5103-74-2 | gamma-Chlordane | 0.013 | | ·R | | | 5103-71-9 | alpha-Chlordane | 0.0064 | 3 | | | | 39765-80-5 | trans-Nonachlor | 0.0076 | | R | | | 72-55-9 | 4,4'-DDE | 0.059 | 丁 | | | Г | 60-57-1 | Dieldrin | 0.010 | UÚ | | | | 72-54-8 | 4,4'-DDD | 0.027 | J | | | | 5103-73-1 | cis-Nonachlor | 0.0069 | NC | | | | 50-28-3 | 4,4' DDT | 0.010 | | R | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U.J | | | | 8001-35-2 | Toxaphene | 0.20 | U | | ### MISCELLANEOUS PARAMETERS | | _ | | Fillet | % Lipids | | | |-----------|-------------|--------|--------|----------|------|--| | Sample ID | Description | Sex | Weight | Fillet | Body | | | K40268 | Carp | female | 748g | 0.80 | 0.70 | | | K40269 | Carp | female | 839g | 1.06 | 0.96 | | | K40270 | Carp | female | 635g | 3.88 | 4.30 | | | K40271 | Carp | female | 586g | 1.78 | 4.90 | | | K40272 | Carp | female | 463g | 0.90 | 1.30 | | | K40273 | Carp | female | 438g | 0.94 | 3.60 | | | K40274 | Сагр | female | 364g | 2.76 | 7.60 | | | K40275 | Carp | female | 547g | 2.51 | 6.60 | | | K40284 | Carp | male | 405g | 2.16 | 10.4 | | | K40285 | Carp | female | 680g | 2.01 | 2.62 | | | K40286 | Carp | female | 606g | 6.84 | 12.3 | | | K40315 | Carp | female | 549g | 0.97 | 2.53 | | | K40316 | Carp | female | 710g | 0.66 | 1.29 | | | K40317 | Carp | female | 837g | 0.51 | 1.18 | | | K40322 | Carp | female | 281g | 1.32 | 4.21 | | | K40325 | Carp | female | 715g | 0.60 | 0.92 | | ### DATA REVIEW FOR ## ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 40191 PCB, PESTICIDE AND MERCURY ANALYSES **BIOTA - FISH** Analyses performed by: Aquatec, Inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York #### <u>Summary</u> The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40191 for the biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and qualified sample results. Analyses were performed on the following samples: | | | | | | Analy | ele. | | |-----------|--------|---------|-------------|-----------------|-----------------|-------|--| | Sample ID | Lab ID | Species | Description | Sample Location | Pest/PCB/
Hg | #Upid | | | K40303F | 208761 | bass | fillet | Trowbridge Dam | x | × | | | K40303R | 208762 | bass | carcass | Trowbridge Dam | | x | | | K40307F | 208763 | bass | fillet | Trowbridge Dam | x | x | | | K40307R | 208764 | bass | carcass | Trowbridge Dam | | × | | | K40323F | 208766 | bass | fillet | Trowbridge Dam | х | × | | | K40323R | 208767 | bass | carcass | Trowbridge Dam | | x | | | K40324F | 208768 | bass | fillet | Trowbridge Dam | x | × | | | K40324R | 208769 | bass | carcass | Trowbridge Dam | | × | | | K40371F | 208770 | bass | fillet | Plainwell Dam | x | × | | | K40371R | 208771 | bass | carcass | Plainwell Dam | | × | | | K40372F | 208772 | bass | fillet | Plainwell Dam | х | × | | | K40372R | 208773 | bass | carcass | Plainwell Dam | | × | | | K40373F | 208774 | bass | fillet | Plainwell Dam | x | x | | | K40373R | 208775 | bass | carcass | Plainwell Dam | | x | | | K40374F | 208776 | bass | fillet | Plainwell Dam | x | × | | | K40374R | 208777 | bass | carcass | Plainwell Dam | | x | | PCB ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: #### Calibration The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for non-linearity at the low end of the calibration curve. #### Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. #### Data Assessment ### 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced in to the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation.
Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in the method or instrument blanks. #### 3. System Performance The system performance was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. #### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for one surrogate in samples K40372F, K40373 and K40374F. No qualifiers were added to these samples based on surrogate performance. All other surrogate recoveries were within acceptable control limits. ### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. #### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. No matrix spike or matrix spike duplicate was included with this data set. #### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ### DATA REVIEW CHECKLIST ### PCB Data Review Checklist | | YES | NO | NA | |--|-----------|-------------|----| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | <u> </u> | | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | <u> x</u> | **** | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | _ x | | | Holding Times | | | | | Have any holding times been exceeded? | | <u>. X</u> | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | x | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | x | | | | If yes, were the samples reanalyzed? | | X | | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | | X | | | Were matrix spikes analyzed at the required frequency? | | | × | | How many spike recoveries were outside of QC limits? | | | · | | | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | 0_ out of0 | ; | | | | Blanks | | | | | Is a Method Blank Summary Form present? | <u>X</u> | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | X | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | X | | | ## PCB Data Review Checklist - Page 2 | | YES | NO | NA | |---|-----|----|----| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | x | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | X | | | | Aroclor 1221 | X | | | | Aroclor 1232 | X | | | | Aroclor 1242 | X | | | | Aroclor 1248 | X | | | | Aroclor 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | X | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | X | - | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed? | . x | | | | Are %D values for all compounds within limits (less than 15%)? | x | | | | Analytical Sequence Check | | | | | Is a analytical sequence form present and complete for each column and each period of analyses? | x | | | | Was the proper analytical sequence followed? | X | | | ### PCB Data Review Checklist - Page 3 | | YES | NO | · NA | |---|----------|----------|-------------| | Cleanup Efficiency Verification | | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | X | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | X | | | | PCB Identification | | | | | ls both a combined and single column Aroclor Identification Report present for every sample? | X | | | | Do the combined column and individual column Aroclor identifications agree? | X | | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | X | | Compound Quantitation and Reported Detection Lin | nits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | <u> </u> | | | Chromatogram Quality | | | | | Were the baselines stable? | <u> </u> | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | x | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | X | | ### PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding | Surrogates | - Column 1 | Surrogates - Column:2 | | | |-----------|------------|------------|------------|-----------------------|-------|--| | | Time | TCX | DCB | TCX | DCB - | | | K40303F | OK for all | | ок | | ок | | | K40307F | samples | | | | | | | K40323F | | | | | | | | K40324F | | | | | | | | K40371F | | | | | | | | K40372F | | ↓ (58) | | Į (59) | | | | K40373F | | ↓ (59) | | ↓ (59) | | | | K40374F | | ↓ (59) | | ļ (59) | Surrogate Standards TCX Tetrachioro-m-xylene DCB Decachlorobiphenyl #### Qualifiers: - D Surrogates diluted out - Recovery high - Recovery low Unless otherwise noted, all parameters are within specified limits. ### PCB Calibration Summary Instrument: <u>HP2618</u> Column: <u>RTX-35 / RTX-5</u> | Date: | 4/30/94 0543 | 5/4 | 5/4 | 5/5 | 5/5 | 5/5 | 6/5 | |---------------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| | Fime: | to
5/1/94 0106 | 1925 | 1959 | 0250 | 0324 | 1014 | 1048 | | • | initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Gal. | Cont.
Cal. | | | %RSD | % D | %0 | % D | % D | % D | %D | | Aroclor 1016 | 4.2 / 4.4 | | | | į į | | | | Aroclor 1221 | 5.1 / 6.9 | | | | | | | | Aroclor 1232 | 4.2 / 3.1 | | | | | | | | Aroclor 1242 | 3.1 / 3.4 | | 3.5 | | | | | | Aroclor 1248 | 3.4 / 3.0 | 4.5 | | 2.0 | | 1.0 | | | Aroclor 1254 | 3.1 / 3.6 | | | | 5.0 | | | | Aroclor 1260 | 3.8 / 3.4 | | | | | | 1.0 | | etrachioro-m-xylene | 5.2 / 6.4 | | | | | | | | Decachlorobiphenyl | 7.9 / 8.1 | | | | | | | | ffected Samples: | | | | | | | | | | | _ | - | | | | | | | | | | | | | | ĺ | øs. | ## PCB Calibration Summary - Page 2 Instrument: <u>HP2618</u> Column: <u>RTX-35 / RTX-5</u> | Date: | | 5/6 | 5/6 | 5/7 | 5/7 | | | |----------------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | | 1401 | 1435 | 0044 | 0119 | | | | | initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Gal. | | • | %RSD | XD | SD. | SAD | XD | %D | %D | | Aroclor 1016 | | | | | | | | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | | | | | | | Aroclor 1242 | | | | | | | | | Aroclor 1248 | | 0.5 | | 3.0 | | | | | Aroclor 1254 | | | 0.5 | | | !
 | | | Arocior 1260 | i | | | | 6.0 | | | | Tetrachloro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | |
| <u> </u> | · , | : | | | | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | | | | | | | ļ | · | | | | | | | | | | | | | | ## CORRECTED ANALYSIS SUMMARY FORMS ## FORM 1 AROCLOR ANALYSIS DATA SHEET EPA SAMPLE NO. K40303F Lab Name: Aquatec, Inc. Lab Code: IAUDA 91082 Case: BIO Contract: SDG: 40191 **BIOTA** Phase Type: Lab Sample ID: 208761 Phase Weight: 10.0 **Date Received: (g)** 10/14/93 1.0 (uL) Injection Volume: Date Extracted: 03/29/94 5.0 Dilution Factor: Date Analyzed: 05/05/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u>a</u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Arocior-1016 | 0.71 | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 1.6 | | | 11096-82-5 | Arocior-1260 | 0.20 | J | ## FORM 1 AROCLOR ANALYSIS DATA SHEET EPA SAMPLE NO. K40307F Lab Code: AQUAI Aquatec, Inc. Lab Name: 91082 BIO SDG: 40191 Case: Contract: **BIOTA** Lab Sample ID: 208763 Phase Type: Phase Weight: 10.0 **Date Received:** 10/14/93 **(g)** 1.0 (uL) Date Extracted: Injection Volume: 03/29/94 Dilution Factor: 05/05/94 5.0 Date Analyzed: Sulfur Clean-up: (Y/N) Ν | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.38 | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Arocior-1254 | 1.0 | | | 11096-82-5 | Aroclor-1260 | 0.13 | J | ## FORM 1 AROCLOR ANALYSIS DATA SHEET EPA SAMPLE NO. K40323F Lab Name: Aquatec, Inc. Lab Code: **IAUDA** 91082 Case: Contract: BIO SDG: 40191 Phase Type: **BIOTA** Lab Sample ID: 208766 10.0 Phase Weight: (g) Date Received: 10/15/93 Injection Volume: 1.0 (uL) Date Extracted: 03/29/94 Dilution Factor: 1.0 Date Analyzed: 05/05/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Arocior-1016 | 0.22 | | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.52 | | | 11096-82-5 | Aroclor-1260 | 0.050 | U | EPA SAMPLE NO. K40324F Lab Code: **AQUAI** Lab Name: Aquatec, Inc. 91082 Case: BIO 40191 Contract: SDG: _ Phase Type: **BIOTA** Lab Sample ID: 208768 Phase Weight: 10.0 Date Received: 10/15/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 03/29/94 Dilution Factor: 2.0 Date Analyzed: 05/05/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.31 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.76 | | | 11096-82-5 | Aroclor-1260 | 0.089 | J | EPA SAMPLE NO. K40371F Lab Code: Lab Name: Aquatec, inc. **AQUAI** Contract: 91082 BIQ SDG: Case: 40191 Phase Type: **BIOTA** Lab Sample ID: 208770 Phase Weight: 10.0 (g) Date Received: 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 Dilution Factor: 2.0 Date Analyzed: 05/06/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ٥ | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.48 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Arocior-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.1 | | | 11096-82-5 | Aroclor-1260 | 0.10 | υ | EPA SAMPLE NO. K40372F , Lab Name: Aquatec, Inc. Lab Code: **AQUAI** SDG: 40191 Contract: 91082 BIO Case: Phase Type: **BIOTA** Lab Sample ID: 208772 Phase Weight: 10.0 **(g)** Date Received: 10/16/93 1.0 Injection Volume: (uL) 03/30/94 Date Extracted: Dilution Factor: 5.0 Sulfur Clean-up: N_ (Y/N) Date Analyzed: 05/05/94 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | υ | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 1.2 | | | 11097-69-1 | Aroclor-1254 | 0.41 | | | 11096-82-5 | Aroclor-1260 | 0.13 | J | | | | | | EPA SAMPLE NO. K40373F Lab Name: Aquatec, inc. Lab Code: **AQUAI** Contract: 91082 Case: BIO SDG: 40191 **BIOTA** Phase Type: Lab Sample ID: 208774 Phase Weight: 10.0 Date Received: (g) 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 5.0 Dilution Factor: Date Analyzed: 05/05/94 Sulfur Clean-up: Ν (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | | |------------|--------------|-----------------------|---|--| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | | 12672-29-6 | Aroclor-1248 | 1.6 | | | | 11097-69-1 | Aroclor-1254 | 0.60 | | | | 11096-82-5 | Aroclor-1260 | 0.25 | U | | EPA SAMPLE NO. K40374F Aquatec, Inc. Lab Code: IAUDA Lab Name: _ 91082 Case: BIO SDG: 40191 Contract: **BIOTA** 208776 Phase Type: Lab Sample ID: 10.0 Phase Weight: (g) **Date Received:** 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 5.0 Dilution Factor: Date Analyzed: 05/05/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | | |------------|--------------|-----------------------|---|--| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | | 11097-69-1 | Aroclor-1254 | 1.3 | | | | 11096-82-5 | Aroclor-1260 | 0.14 | J | | ## PESTICIDE ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### Data Assessment ## 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. No deviations from this holding time were noted. ### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. ### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. #### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic
compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. All surrogate recoveries were within acceptable control limits. • ### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40303F | Aldrin
4,4'-DDE
4,4'-DDT | 42.1%
27.4%
421.7% | |---------|--------------------------------|--------------------------| | K40307F | Aldrin
4,4'-DDE
4,4'-DDT | 40.7%
26.7%
464.7% | | K40323F | Aldrin
4,4'-DDE | 41.9%
40.0% | | K40324F | Aldrin
4,4'-DDE | 42.9%
33.3% | | K40371F | Aldrin
4,4'-DDE | 90.0%
64.3% | | K40372F | Aldrin
4,4'-DDE | 75.9%
58.6% | | K40373F | Aldrin
4,4'-DDE
4,4'-DDT | 87.5%
67.7%
400.0% | | K40374F | Aldrin
4,4'-DDE | 81.3%
35.6% | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. ### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. No matrix spike or matrix spike duplicate was included in this data set. ### 8. System Performance and Overall Assessment 'Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. **Data Validation Checksheets** ## Pesticide Data Validation Checklist | | YES | NO | NA | |--|-------------|----|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | <u> </u> | | | | Are the samples numbers included in the narrative? | <u> </u> | | | | Are the sample chain-of-custodies present? | X | | - | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are the surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | x | | | | Are the outliers correctly marked with an asterisk? | | | X | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | | X | | | If yes, were the samples reanalyzed? | | | X | | Were the method blanks reanalyzed? | | | X | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | | X | | | Were matrix spikes analyzed at the required frequency? | | | X | | How many spike recoveries were outside of QC limits? | | | | | | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | | | | | Blanks | | | | | Is the method blank summary form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | | | | | | # Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA_ | |--|----------------|-------------|-----| | Is the chromatographic performance acceptable for each instrument? | <u> </u> | | - | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any trip/field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | <u> </u> | | | Calibration and GC Performance | | • | | | Are the following chromatograms and data printouts presblanks, and MS/MSD? | sent for a | all samples | , | | peak resolution check | <u> x</u> | | | | performance evaluation mixtures (BCS) | X | | | | Toxaphene multipoint calibration | X | | | | Pesticide/PBB multipoint calibration | X | | | | Pesticide/PBB mid-point standard | X | | | | instrument blanks | X | | | | Are Forms VI 1-4 present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | × | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | <u> </u> | | · | | is Form VII-1 present for each BCS analyzed for both columns? | X | | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | x | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | X | | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | X | | | | Are RPD values for all compounds < 25%? | X | | | | Analytical Sequence Check | | | | | Is Form VIII present and complete for each column and each period of analyses? | × | | · | | | - | | | ## Pesticide/PCB Data Validation Checklist - Page 3 | | YES | NO | NA | |---|----------|-------------|---------------| | Was the proper analytical sequence followed? | X | | | | Cleanup Efficiency Verification | | | | | Is Form IX-1 present for each lot of Florisil cartridges used? | X | | | | Are all samples listed on the form? | X | | | | If GPC cleanup was performed, is Form IX-2 present? | | - | X | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits for: | | | | | Florisil cartridge check (80-120%) | X | | | | GPC calibration (80-110%) | | | X | | Pesticide/PBB Identification | | | | | Is a Form X present for every sample in which a pesticide or PCB was detected? | <u> </u> | | | | Was GC/MS confirmation provided when required? | | | x | | Is the percent difference (%D) calculated for the positive sample results on the two columns less than 25%? | | X | | | Were there any false negatives? | | X | | | Compound Quantitation and Reported Detection Limit | 8 | | - | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | <u> </u> | | | | Chromatogram Quality | | | | | Were the baselines stable? | <u> </u> | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | X | | ## Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample ID | Holding | Surrogates | - Column 1 | Surrogates - Golumn 2 | | | |-----------|------------|------------|------------|-----------------------|-----|--| | | Time | TCX | DCB | тсх | DCB | | | K40303F | OK for all | ок | ок | ок | ок | | | K40307F | samples | | | | | | | K40323F | | | | | | | | K40324F | | | · | • | | | | K40371F | | | | | | | | K40372F | | | | | | | | K40373F | | | · | _ | | | | K40374F | ·· | | | | | | | | | | | | | | | | | | T | | | Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: D Surrogate diluted out Recovery high **↓** Recovery low Unless otherwise noted, all samples are within specified limits. ## Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | -4/20/94 | 4/21 | 4/21 | | | | | |-----------------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | 16:59 | 07:16 | 10:50 | | | | | | 1 | initial
Cal | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Gont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | % ASD | %D | % D | %D | % D | % D | %D | | 2-Bromobiphenyl | ok | ok | ok | | | | | | 3-Bromobiphenyl | | | | | <u> </u> | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | <u> </u> | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | : | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachloro-m-xylene | | | | | 0. | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | | | | | | | | | | | | ſ | | | | | | | | | Ī | | - | | | | | | | | | | | | | | | ## Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Çolumn: <u>RTX-35</u> | Date: | 4/20/94 | 4/21 | 4/21 | | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|--------------| | Time: | 18:59 | 07:16 | 10:50 | | | | | | v | initial
Cal. | Cent.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal | | | %RSD | % D | %D | % D | % 0 | X D | % D | | 2-Bromobiphenyl | . ok | ok | ok | | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | <u></u> |
| | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | · | | <u> </u> | <u> </u> | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachloro-m-xylene | | | | | | | <u> </u> | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | <u> </u> | | | ſ | | | | | | | | | Ī | | | | | | | | | | | | | | | | | | <u> </u> | | | | - | | | | Corrected Sample Analysis Data Sheets Lab Name: Aquatec, Inc. K40303F Lab Code: AQUAI K40303F Contract: 91082 SDG: 40191 Case: BIO SDG: 40191 Phase Type: Biota Date Received: 10/14/93 Client ID No. Phase Type: **Biota Date Received:** 10/14/93 Phase Weight: 03/29/94 10.0 Date Extracted: 04/21/94 Extraction: Soxhlet Date Analyzed: 1.0 N Dilution Factor: Sulfur Clean-up: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|---|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.038 | J | | | 1024-57-3 | Heptachlor Epoxide | 0.033 | | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.062 | | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.016 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50-29-3 | 4,4'-DDT | 0.023 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Client ID No. K40307F Aquatec, Inc. Lab Name: Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40191 Lab Sample ID: 208763 Phase Type: **Biota Date Received:** 10/14/93 Phase Weight: 10.0 **Date Extracted:** 03/29/94 04/21/94 Soxhlet Extraction: Date Analyzed: 1.0 Sulfur Clean-up: Dilution Factor: N | | | | | _ | |----------------------|--------------------|-----------------------|---|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | 2052-07-5 | 2-Bromobiphenyi | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | 1 | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | 1 | | 58-89-9 | gamma-BHC | 0.0050 | U | 1 | | 309-00-2 | Aldrin | 0.027 | T | 1 | | 1024-57-3 | Heptachlor Epoxide | 0.022 | | 1 | | 5103-74-2 | gamma-Chiordane | 0.0050 | U | 1 | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | 1 | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | 1 | | 72-55-9 | 4,4'-DDE | 0.045 | 7 | 1 | | 60-57-1 | Dieldrin | 0.010 | U | 1 | | 72-54-8 | 4,4'-DDD | 0.010 | U | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | - 50 29 3 | 4,4'-DDT | 0.017 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1'` | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO K40323F 40191 Client ID No. Phase Type: Biota Lab Sample ID: 208766 Date Received: 10/15/93 Date Extracted: 03/29/94 Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Date Analyzed: 04/21/94 Sulfur Clean-up: N SDG: | COMPOUND | CONCENTRATION (mg/Kg) | a | |--------------------|---|--| | 2-Bromobiphenyl | 0.010 | U | | 3-Bromobiphenyl | 0.010 | Ū | | 4-Bromobiphenyl | 0.010 | U | | Hexachlorobenzene | 0.0050 | U | | gamma-BHC | 0.0050 | Ū | | Aldrin | 0.017 | J | | Heptachlor Epoxide | 0.019 | | | gamma-Chlordane | 0.0050 | U | | alpha-Chlordane | 0.0050 | U | | trans-Nonachior | 0.0050 | U | | 4,4'-DDE | 0.020 | 5 | | Dieldrin | 0.010 | U | | 4,4'-DDD | 0.010 | U | | cis-Nonachlor | 0.0050 | Ü | | 4,4'-DDT | 0.010 | Ü | | Hexabromobiphenyl | 0.020 | U | | Toxaphene | 0.20 | U | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma-Chlordane alpha-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | Comp/Kg | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40324F 40191 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208768 Date Received: 10/15/93 Date Extracted: 03/29/94 Date Analyzed: 04/21/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | Q | |------------|--------------------|--------------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.021 | 7 | | 1024-57-3 | Heptachlor Epoxide | 0.019 | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.033 | 4 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. K40371F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40191 Lab Sample ID: 208770 Phase Type: Biota Date Received: 10/16/93 Client ID No. | | | Lao Sample II | D: 200770 | |------------------|---------|----------------|-------------| | Phase Type: | Biota | Date Receive | d: 10/16/93 | | Phase Weight: | 10.0 g | Date Extracte | d: 03/30/94 | | Extraction: | Soxhlet | Date Analyze | d: 04/21/94 | | Dilution Factor: | 1.0 | Sulfur Clean-u | p: N | | | | | | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|----|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.0020 | | ŀR | | 1024-57-3 | Heptachlor Epoxide | 0.023 | | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | İ | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | l | | 72-55-9 | 4,4'-DDE | 0.028 | IN | ĺ | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.010 | U | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50-29-3 | 4,4'-DDT | 0.010 | U | 1 | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | ĺ | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40372F 40191 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208772 Date Received: 10/16/93 Date Extracted: 03/30/94 Date Analyzed: 04/21/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachiorobenzene | 0.0050 | V | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.029 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.035 | | | 5103-74-2 | gamma-Chlordane | 0.0050 | Ü | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | Ū | | 72-55-9 | 4,4'-DDE | 0.029 | JN | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | υ | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40373F 40191 Phase Type: Biota Phase Weight: 10.0 g
Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208774 Date Received: 10/16/93 Date Extracted: 03/30/94 Date Analyzed: 04/21/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.032 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.039 | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.031 | JN | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.018 | / | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208776 Date Received: 10/16/93 Date Extracted: 03/30/94 Date Analyzed: 04/21/94 Sulfur Clean-up: N Client ID No. K40374F 40191 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.016 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.013 | | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.045 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | # MERCURY ANALYSES #### Introduction Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: ### Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). ### Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - Duplicate analysis not within control limits. - + Correlation coefficient for MSA is less than 0.995. #### Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### Data Assessment ### 1. Holding Time The recommended holding times for mercury analyses is 28 days from tissue homogenization. All samples were analyzed within this holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced in to the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. #### 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. #### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. #### 3.3 CRDL Standard All CRDL standard recoveries were within acceptable limits. ### 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. ### 4.1 Matrix spike Recovery for the matrix spike was below acceptable limits. All data have been qualified as estimated based on the deviation. 1 - ### 4.2 Laboratory Duplicate The laboratory duplicate relative percent difference (RPD) was outside acceptable limits. No qualifiers have been added to the samples based on the RPDs. 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. 7. Furnace QC No furnace analyses were performed. 8. Method of Standard Additions (MSA) No MSA were performed. 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. **Data Validation Checksheets** ## Inorganic Data Validation Checklist | | YES | NO | NA | |--|---------------|-------------|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the sample numbers included in the narrative? | Χ | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | X | | | | Sample No.? | <u> </u> | | | | SDG No.? | X | | | | Correct units? | X | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | ls the distillation log for mercury present? | X | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP | | | X | | Flame AA | | | X | | Furnace AA | | | X | | Mercury | X | | | | Cyanides | | | X | | Is the data legible? | × | | | | is the data properly labeled? | X | | | | Holding Times | | | | | Were mercury analyses performed within 28 days? | X | | · | | · | -, | | | ## Inorganic Data Validation Checklist - Page 2 | | YES | NO | NA_ | |---|--------|----------------|-------------| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | | | Are all forms complete? | X | | | | Are correct units indicated on Form I's? | X | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | X | | | | Was a brief physical description of samples given on Form I's? | | X | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | | | X | | Is a record of 5 point calibration present for Hg
analysis? | X | | | | Is a record of 4 point calibration present for: | | | | | Flame AA? | | | X | | Furnace AA? | | | X | | Cyanides? | | | X | | ls one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | Х | | ls correlation coefficient less than .995 for: | | | | | Mercury Analysis? | X | | | | Cyanide Analysis? | | | X | | Atomic Absorption Analysis? | | | X | | Form II A (Initial and Continuing Calibration Verifica | ation) | _ . | | | Present and complete for every metal and cyanide? | X | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | X | | Hg
(80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | X | # Inorganic Data Validation Checklist - Page 3 | | YES | NO | NA | |--|-------------|-------------|-------------| | Was continuing calibration performed every 10 samples or every 2 hours? | X | | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | X | | Was a mid-range calibration verification standard distilled and analyzed for cyanide analysis? | | | X | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | X | | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | X | | Form III (Initial and Continuing Calibration Blanks) | | | | | Present and complete? | X | | | | Was an initial calibration blank analyzed? | X | | | | Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)? | X | | | | Are all calibration blanks (when IDL <crdl) (crdls)?<="" contract="" detection="" equal="" less="" limits="" or="" required="" td="" than="" the="" to=""><td>X</td><td></td><td></td></crdl)> | X | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | Х | | Form III (Preparation Blank) | | | | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | X | | | | each batch of digested samples? | X | | | | each matrix type? | X | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | X | | ## Inorganic Data Validation Checklist - Page 4 | | YES | NO | NA | |--|-----------|----------------|----| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | X | | Is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | X | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | | | | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | X | | Are all Interference Check Sample results inside the control limits (±20%)? | | | X | | If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | X | | Form V A (Spiked Sample Recovery - Pre-Digestion/P | re-Distil | <u>lation)</u> | | | Present and complete for: | | | | | each SDG? | X | | | | each matrix type? | X | | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | | X | | | If no, is sample concentration greater than or equal to four times spike concentration? | | X | | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | X | | | | Are any spike recoveries: | | | | | less than 10%? | | X | | | between 10-74%? | X | | | | between 126-200%? | | × | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | | | | Present and complete for: | | | | | each SDG? | X | | | | | | | | ### Inorganic Data Validation Checklist - Page 5 | | YES | NO | NA | |---|-----|-------------|-------------| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | X | | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | | X | | | If 'no, are all results outside the control limits flagged with an * on Form I's and VI? | X . | | | | Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | X . | | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | | X | | Form VII (Laboratory Control Sample) | | | | | Was one LCS prepared and analyzed for: | | | | | each SDG? | X | | | | each batch samples digested/distilled? | X | | | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | Is LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | × | | each matrix type? | | | × | | Was field blank(s) used for Serial Dilution Analysis? | | | X | | Are results outside control limit flagged with an "E""
on Form I's and Form IX when initial concentration on
Form IX is equal to 50 times IDL or greater. | | | X | | Are any % difference values: | | | | | > 10%? | | | X | | ≥100%? | | | X | | Furnace Atomic Absorbtion (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | X | | | | | | ### Inorganic Data Validation Checklist - Page 6 | | YES | NO | NA | |--|----------|----|---------------------------------------| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | | | X | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X - | | ls analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | | | | Present? | | X | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | X | | Was MSA required for any sample but not performed? | | X | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | | X | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | X | | Field Blank | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | Х | | Form X, XI, XII (Verification of Instrumental Paramet | ers) | | · · · · · · · · · · · · · · · · · · · | | Is verification report present for: | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation Factors (annually)? | | · | X | | ICP Linear Ranges (quarterly)? | | | X | | Form X (Instrument Detection Limits) | | | | | Are IDLs present for: | | | | | all the analytes? | X | | | | all the instruments used? | <u> </u> | | | ## Inorganic Data Validation Checklist - Page 7 | YES | NO | NA | |-----|-----|----| | | X | | | | | X | | | | X | | | x | | | | | X | | | YES | | Corrected Sample Analysis Data Sheets # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 9 | 10 | 82 | K40303F | |-------------|--------------|-----------|-----------------|-----|----------|-----------------| | | | | | | | SDG No.: 4019 | | trix (soil/ | water): FISH | <u>-</u> | • | L | ab Samp | le ID: 208761 | | vel (low/me | d): LOW_ | _ | | Da | ate Rec | eived: 10/14/94 | | Solids: | 100. | 0 | | | • | | | C | oncentration | Units (ug | /L or mg/kg dry | y v | weight): | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony_ | | - | | NR | | • | 7440-38-2 | Arsenic | | _ | —— | NR | | | | Barium | | - | | NR | | | 7440-41-7 | Beryllium | | - | | NR | | | 7440-43-9 | Cadmium | | - | | NR | | | | Calcium | | _ | | NR | | | 7440-47-3 | Chromium | | _ | | NR | | | 7440-48-4 | Cobalt - | | - | | NR | | | | Copper | | | | NR | | | 7439-89-6 | Iron | | | | NR | | | 7439-92-1 | Lead | | | | NR | | | | Magnesium | | | | NR | | | | Manganese | | | | NR | | | | Mercury | 0.11 | _ | ZN*_ | CV | | | 7440-02-0 | Nickel | | | | NR | | | 7440-09-7 | Potassium | | _ | | NR | | | 7782-49-2 | Selenium_ | | | | NR | | | 7440-22-4 | Silver | | | | NR | | | | Sodium | | _ | | NR | | | 7440-28-0 | Thallium_ | | _ | | NR | | | 7440-62-2 | Vanadium_ | | _ | | NR | | | 7440-66-6 | Zinc | | _ | | NR | | | | Cyanide | | _ | | NR | | lor Before: | | Clarit | y Before: | _ | | Texture: | | lor After: | | Clarit | y After: | > | _ | Artifacts: | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | | | | 1 | |-------------|---------------|-----------------|------------------|------------|-----------------| | o Name: A(| QUATEC | | Contract: 9: | 1082 | K40307F | | ab Code: A(| QUAI_ | Case No.: BI | O SAS No. | : | SDG No.: 40191 | | atrix (soil | L/water): F | 'ISH_ | | Lab Samp | ole ID: 208763 | | evel (low/m | med): L | .owwo | • | Date Rec | eived: 10/14/94 | | Solids: | 1 | .00.0 | | | | | | Consontrat | ion Unita (ua | IT as marles due | · ··oiabtl | · MC/VC | | | Concentrat | ion units (ug | /L or mg/kg dry | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | M | | | 7429-90 | -5 Aluminum | | | NR | | | 7440-36 | -0 Antimony_ | | | NR | | | 7440-38 | | | | NR | | | 7440-39 | | | | NR | | - | 7440-41 | | | _ | NR | | | 7440-43 | | | | NR | | |
7440-70 | | | | NR | | | 7440-47 | | | | NR | | | 7440-48 | | | | NR
NR | | | 7439-89 | - I F F | · | | NR | | | 7439-92 | | | - | NR | | | 7439-95 | | | - | NR | | | 7439-96- | | | - | NR | | | 7439-97- | | 0.07 | _ ZN*_ | cv | | | 7440-02- | | | | NR | | | 7440-09- | | | -1 | NR | | | 7782-49- | | | - | NR | | | 7440-22- | | | | NR | | | 7440-23- | -5 Sodium | | _ | NR | | | 7440-28- | -0 Thallium | | | NR | | | 7440-62- | -2 Vanadium - | | | NR | | | 7440-66- | | | | NR | | | | Cyanide | | _ | NR | | lor Before | : | Clari | ty Before: | \ | Texture: | | lor After: | _ | Clari | ty After: | | Artifacts: | | mments: | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ر Name: AQUA | TEC | | Contract: 91082 | | | K40323F | | | |---------------|-----------------------------|------------------------|-----------------|----------|----------------|----------------|--|--| | ab Code: AQUA | AI_ Case No.: BIO_ SAS No.: | | | | SDG No.: 40191 | | | | | atrix (soil/w | ater): FISH | | | L | ab Sampl | e ID: 208766 | | | | evel (low/med |): LOW_ | _ | | Da | ate Rece | ived: 10/15/94 | | | | Solids: | 100. | 0 | | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | Ž | weight): | MG/KG | | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | | 7400 00 6 | 3 Tana 2 mana | | _ | | G#K | | | | | 7429-90-5
7440-36-0 | Aluminum_
Antimony_ | | | | NR
NR | | | | | 7440-38-2 | Arsenic | <u> </u> | - | | NR NR | | | | | 7440-38-2 | Barium | | _ | | NR | | | | | 7440-41-7 | Beryllium | | _ | | NR | | | | | 7440-43-9 | Cadmium | | _ | | NR | | | | | 7440-70-2 | Calcium | | _ | | NR | | | | | 7440-47-3 | Chromium | | - | | NR | | | | | | Cobalt | | _ | | NR | | | | | 7440-50-8 | Copper | | - | | NR | | | | | | Iron | | _ | | NR | | | | | 7439-92-1 | Lead | | 1 | | NR | | | | | 7439-95-4 | Magnesium | | • | | NR | | | | | | Manganese | | | | NR | | | | | | Mercury | 0.36 | _ | | CV | | | | | | Nickel | | | | NR | | | | | | Potassium | | | | NR | | | | • | | Selenium_ | | | | NR | | | | | | Silver | | _ | | NR | | | | | | Sodium | | | | NR | | | | | · - | Thallium_ | | _ | | NR | | | | | 7440-62-2 | Vanadium_ | | | | NR | | | | | 7440-66-6 | Zinc | | _ | | NR | | | | | | Cyanide | | - | | NR | | | | lor Before: | | Clarit | y Before: | _ | |
Texture: | | | | lor After: | | | cy After: | | | Artifacts: | | | | mments: | | | - | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 9 | 108 | 2 | K40324F | |----------------|--------------|---------------|-----------------|-----------------|---------------------------------------|-----------------| | | | | | | | SDG No.: 40191_ | | Matrix (soil/ | water): FISH | - | | La | b Sampl | e ID: 208768 | | Level (low/med | i): LOW_ | _ | | Da | te Rece | ived: 10/15/94 | | % Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | • | 7429-90-5 | Aluminum | : | - - | | NR | | | 7440-36-0 | | | - - | | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | • | 7440-39-3 | Barium | | | | NR | | | 7440-41-7 | Beryllium | | | | NR | | | 7440-43-9 | | | | | NR | | | 7440-70-2 | | | I_I. | | NR | | | 7440-47-3 | Chromium_ | | _ . | | NR | | | 7440-48-4 | Cobalt | | _ . | | NR | | | 7440-50-8 | Copper | | _ ₋ | | NR | | | 7439-89-6 | Iron | | _ _ | | NR | | | 7439-92-1 | Lead | | _ - | | NR | | | 7439-95-4 | Magnesium | | I | | NR | | | 7439-96-5 | Manganese | | _ _ | | NR | | | 7439-97-6 | Mercury_ | 0.09 | - | | CV | | | 7440-02-0 | Nickel | | _ - | | NR | | | 7440-09-7 | Potassium | | - - | | NR | | * | 7782-49-2 | Selenium_ | | _ - | | NR | | | 7440-22-4 | Silver | | _ - | | NR | | | 7440-23-5 | Sodium | | _ - | | NR | | | 7440-28-0 | Thallium | ~ | - - | | NR | | | 7440-62-2 | Vanadium_ | | - - | | NR | | | 7440-66-6 | Zinc | | - - | | NR
NR | | | | Cyanide | | - - | | nk | | | I | ! | · | · | | —' | | Color Before: | | Clarit | y Before: | | | Texture: | | Color After: | | Clarit | y After: | | | Artifacts: | | Comments: | | | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ⊾o Name: AQUA | TEC | | Contract: 9 | 1082 | K40371F | |--------------------|---|--|-----------------|-----------------|--| | Lab Code: AQUA | I_ Ca | se No.: BI | SAS No. | • | SDG No.: 40191_ | | Matrix (soil/w | ater): FISH | | | Lab Samp | le ID: 208770 | | Level (low/med |): LOW_ | | | Date Rec | eived: 10/16/93 | | % Solids: | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | CAS No. | Analyte | Concentration | c Q | м | | | 7440-36-0
7440-38-2
7440-39-3
7440-41-7
7440-43-9
7440-70-2
7440-47-3
7440-48-4
7440-50-8 | Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Chrom_Cobalt_Copper_Iron_Chrom_Cobalt_Copper_Iron_Chrom_Cobalt_Copper_Iron_Chrom_Cobalt_Copper_Iron_Chrom_Cobalt_Copper_Iron_Chrom_Cobalt_Copper_Iron_Chrom_Chr | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR | | | 7439-95-4
7439-96-5
7439-97-6
7440-02-0
7440-09-7
7782-49-2
7440-22-4
7440-23-5
7440-28-0 | Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide | 0.16 | | NR NR CV NR | | ا
:Color Before | | Clarit | y Before: | l l | Texture: | | Color After: | | | y After: | | Artifacts: | | Comments: | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ಎ Name: AQU | ATEC | | Contract: 9 | 108 | 2 | K40372F | |-------------|------------------------|--|-----------------|------------|------------|-----------------| | | |
 | | | SDG No.: 40191 | | trix (soil/ | water): FISH | <u>. </u> | | La | b Samp | ole ID: 208772 | | vel (low/me | d): LOW_ | | | Da | te Rec | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dry | y w | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | B400 00 E | | | 1_1 | | 755 | | | 7429-90-5 | Aluminum_ | | _ | <u></u> | NR | | | 7440-36-0 | Antimony_ | | - | | NR | | | 7440-38-2
7440-39-3 | ArsenicBarium | | - | | NR
NR | | | 7440-39-3 | | | - | | NR | | | 7440-41-7 | Cadmium | | 1-1 | | NR | | | 7440-70-2 | Calcium | | - | | NR | | | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | - | | NR | | | 7439-92-1 | Lead | | - | | NR | | | 7439-95-4 | Magnesium | | | | NR | | | 7439-96-5 | Manganese | | - | | NR | | | 7439-97-6 | Mercury | 0.07 | - | <u>₹N*</u> | CV | | | | Nickel - | | - | 7 | NR | | | 7440-09-7 | Potassium | | | | NR | | • | 7782-49-2 | Selenium | . | - | | NR | | | 7440-22-4 | | | - | | NR | | | 7440-23-5 | | | 1-1 | | NR | | | 7440-28-0 | | | - · | | NR | | | 7440-62-2 | Vanadium | | - | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | - | | NR | | | | | | | | | | or Before: | | Clarit | y Before: | | | Texture: | | or After: | | Clarit | y After: | | | Artifacts: | | | | | | | • | | ILM02.1 FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ر Name: AQUA | TEC | | Contract: 9 | 1082 | | | K40373F | | |--------------|------------------------|-----------------------|--------------------|-------------|--------|----------|------------|--| | | | | O SAS No. | | | SDG | No.: 4019 | | | trix (soil/w | ater): FISH | i | | Lab | Samp. | le ID | : 208774 | | | vel (low/med | l): LOW_ | | | Date | e Rec | eived | : 10/16/93 | | | Solids: | 100. | 0 | | | | | | | | | | | /T am mar/lear alm | | i-h+\ | . WC/ | VC. | | | Co | | Units (ug | /L or mg/kg dry | y we. | rgirt) | . MG/ | NG | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | | 7429-90-5 | Aluminum | | | | NR | | | | | 7440-36-0 | Antimony_ | | | | NR | | | | | 7440-38-2 | Arsenic_ | | _ _ | | NR | | | | | 7440-39-3
7440-41-7 | Barium Beryllium | | - - | | NR
NR | | | | | 7440-41-7 | Cadmium | | - - | | NR | | | | | 7440-70-2 | Calcium | | - - | | NR | | | | | | Chromium | | - - | | NR | | | | | 7440-48-4 | Cobalt | | - - | | NR | | | | | 7440-50-8 | Copper | | - - | | NR | | | | | 7439-89-6 | Iron | | | | NR | | | | | 7439-92-1 | Lead | | | | NR | | | | | | Magnesium | | | | NR | | | | | | Manganese | | | | NR | | | | | | Mercury | 0.15 | - -3 | _N* | CV | | | | | | Nickel | | | | NR | | | | | | Potassium
Selenium | | | | NR
NR | | | | | | Silver | | - - | | NR | | | | | | Sodium | | - - | | NR | | | | | 7440-28-0 | Thallium | | - - | | NR | | | | | 7440-62-2 | Vanadium | | - - | | NR | | | | | | Zinc | | - | | NR | | | | | | Cyanide | | | | NR | | | | | 1 | | | _ _ | | <u> </u> | | | | lor Before: | | Clarit | y Before: | | | Text | ure: | | | lor After: | | Clarit | y After: | | | Arti | facts: | | | mments: | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. K40374F | ∽⊿b Name: AQU | ATEC | | Contract: 9: | 1082 | | |---------------|------------------------|------------------|-----------------|----------------|------------------| | Lab Code: AQU | AI_ Ca | se No.: BI | O SAS No. | : | SDG No.: 40191_ | | Matrix (soil/ | water): FISH | <u>_</u> | | Lab Samp | ple ID: 208776 | | Level (low/me | d): LOW_ | | | Date Red | ceived: 10/16/93 | | % Solids: | 100. | 0 | | | | | c | oncentration | Units (ug | /L or mg/kg dry | y weight) |): MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | - | NR | | • | 7440-36-0 | Antimony_ | | - | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium | | | NR | | | 7440-41-7 | | | l_ | NR | | | 7440-43-9 | Cadmium_ | | | NR | | | 7440-70-2
7440-47-3 | Calcium Chromium | | | NR
NR | | | 7440-47-3 | | | | - NR | | | 7440-50-8 | Copper | | - | NR | | | 7439-89-6 | Iron | | - | NR | | | 7439-92-1 | Lead | | - | NR | | | | Magnesium | | | NR | | - | 7439-96-5 | Manganese | | - | NR | | | 7439-97-6 | Mercury | 0.20 | _ Z N*_ | CV | | | 7440-02-0 | Nickel | | | NR | | | 7440-09-7 | Potassium | | | NR | | • | 7782-49-2 | Selenium_ | | | NR | | | 7440-22-4 | Silver | | | NR | | | 7440-23-5 | Sodium | | | NR | | | 7440-28-0 | Thallium_ | | | NR | | | 7440-62-2 | Vanadium_ | | | NR | | | 7440-66-6 | Zinc | | - | NR | | | | Cyanide | | - | NR | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | | | | <u> </u> | FORM I - IN ### MISCELLANEOUS PARAMETERS ### MISCELLANEOUS PARAMETERS | | | | Fillet | % 1 | Lipids | |-----------|------------------|----------|--------|--------|----------------------| | Sample ID | Description | Sex | Weight | Fillet | Remaining
Carcass | | K40303 | Small Mouth Bass | female | 227g | 1.11 | 4.3 | | K40307 | Small Mouth Bass | male | 148g | 0.78 | 2.0 | | K40323 | Small Mouth Bass | female | 174g | 0.34 | 0.83 | | K40324 | Small Mouth Bass | male | 147g | 0.61 | 2.73 | | K40371 | Small Mouth Bass | female . | 219g | 1.04 | 3.5 | | K40372 | Small Mouth Bass | female | 194g | 1.39 | 7.4 | | K40373 | Small Mouth Bass | female | 265g | 1.38 | 2.9 | | K40374 | Small Mouth Bass | male | 230g | 0.85 | 3.2 | #### DATA REVIEW FOR # ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 40193 PCB, PESTICIDE AND MERCURY ANALYSES BIOTA - FISH Analyses performed by: Aquatec, inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York #### Summary The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40219 for the Biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and corrected sample results. Analyses were performed on the following samples: | | | | | | Analysis | | |-----------|--------|--------------|-------------|-----------------|-----------------|--------| | Sample ID | Leb ID | Species | Description | Sample Location | Pest/PGB/
Hg | XCIpid | | K40333W | 201581 | White Sucker | whole body | Trowbridge Dam | × | x | | K40334W | 201582 | White Sucker | whole body | Trowbridge Dam | x | × | | K40335W | 201583 | White Sucker | whole body | Trowbridge Dam | × | × | | K40336W | 201584 | White Sucker | whole body | Trowbridge Dam | × | х | | K40337W | 201585 | White Sucker | whole body | Trowbridge Dam | × | × | | K40338W | 201586 | White Sucker | whole body | Trowbridge Dam | x | х | | K40376W* | 201633 | White Sucker | whole body | Plainwell Dam | x | × | | K40377W | 201634 | White Sucker | whole body | Plainwell Dam | x | x | | K40378W | 201635 | White Sucker | whole body | Plainwell Dam | x | x | | K40379W | 201636 | White Sucker | whole body | Plainwell Dam | × | х | | K40380W | 201637 | White Sucker | whole body | Plainwell Dam_ | x | × | ^{*} MS/MSD/DUP performed on sample ## PCB ANALYSES #### <u>Introduction</u> Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: #### Calibration The response function of the electron capture detector is
inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for nonlinearity at the low end of the calibration curve. #### Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. ~ #### Data Assessment #### 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No Aroclors were detected in the method or instrument blanks. #### 3. System Performance The system performance was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. #### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. #### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. All surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. #### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries and the relative percent difference between recoveries (RPD) were within acceptable control limits. All spike recoveries in the matrix spike blank were within acceptable control limits. #### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ### DATA REVIEW CHECKLIST ### **PCB Data Review Checklist** | | YES | NO | NA | |--|-----------|-----|----| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | <u> </u> | | | | Are the samples numbers included in the narrative? | <u> x</u> | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | _x_ | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | <u> </u> | ·— | | | Are all the samples listed on the appropriate surrogate recovery form? | X | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | X | | | | If yes, were the samples reanalyzed? | | × | | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | Χ. | | | | Were matrix spikes analyzed at the required frequency? | x | | | | How many spike recoveries were outside of QC limits? | | | | | 0 out of4 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | _0 out of _2_ | | | | | Blanks | | | | | is a Method Blank Summary Form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ## PCB Data Review Checklist - Page 2 | | YES | NO | NA_ | |---|-----|-------------|-------------| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | X | | | | Aroclor 1221 | x | | | | Aroclor 1232 | X | | | | Aroclor 1242 | X | | | | Aroclor 1248 | X | | | | Aroclor 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | X | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed?* | × | | | | Are %D values for all compounds within limits (less than 15%)? | x | | | | Analytical Sequence Check | | | | | Is a analytical sequence form present and complete for each column and each period of analyses? | X | | | | Was the proper analytical sequence followed? | X | | | | | | | | ## PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|-------------|----------|----| | Cleanup Efficiency Verification | | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | x | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | x | | | | PCB Identification | | | | | Is both a combined and single column Aroclor Identification Report present for every sample? | x | | | | Do the combined column and individual column Aroclor identifications agree? | X | | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | × | | Compound Quantitation and Reported Detection Lin | nits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | <u> </u> | | ### PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding | Surrogates | - Column 1 | Surrogates | - Column 2 | |------------|------------|------------|------------|------------|------------| | | Time | TCX | DCB | TCX | DCB | | K40333W | OK for all | ОК | ok | ок | ок | | K40334W | eamples | | | | | | K40335W | | | | | | | K40336W | | | | | | | K40337W | | | | | | | K40338W | | | | | | | K40376W | | | | | | | K40376WMS | | | | | | | K40376WMSD | | | | | | | K40377W | | | | | | | K40378W | | | | | | | K40379W | | | | | | | K40380W | | | | | | Surrogate Standards TCX Tetrachloro-m-xylene
DCB Decachlorobiphenyl #### Qualifiers: Surrogates diluted out Recovery high Recovery low Unless otherwise noted, all parameters are within specified limits. ### PCB Calibration Summary Instrument: <u>HP2618</u> Column: RTX-35 / RTX-5 | S/11/94 1334 Cont. | Date: | 5/10/94 1845 | 5/12 | 5/12 | 5/12 | 5/12 | 5/13 | 5/13 | |--|----------------------|--------------|------------|------------|------------|------------|------------|---------------| | Aroclor 1016 | Time: | | 0540 | 0713 | 1353 | 1426 | 0347 | 0420 | | Aroclor 1016 | | Initial Cal. | | | | | | Cont.
Cal. | | Aroclor 1221 3.9 / 3.9 Aroclor 1232 3.2 / 3.7 Aroclor 1242 2.7 / 2.8 2.5 Aroclor 1248 3.2 / 2.7 3.0 4.0 1.0 Aroclor 1254 2.8 / 2.8 1.0 Aroclor 1260 3.5 / 2.7 Tetrachloro-m-xylene 4.9 / 3.6 Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | | %RSD | % D | % D | % 0 | % D | % D | ΧD | | Aroclor 1232 3.2 / 3.7 Aroclor 1242 2.7 / 2.8 2.5 Aroclor 1248 3.2 / 2.7 3.0 4.0 1.0 Aroclor 1254 2.8 / 2.8 1.0 Aroclor 1260 3.5 / 2.7 Tetrachloro-m-xylene 4.9 / 3.6 Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | Aroclor 1016 | 4.6 / 4.6 | | | | | | | | Aroclor 1242 2.7 / 2.8 2.5 Aroclor 1248 3.2 / 2.7 3.0 4.0 1.0 Aroclor 1254 2.8 / 2.8 1.0 Aroclor 1260 3.5 / 2.7 Tetrachloro-m-xylene 4.9 / 3.6 Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | Aroclor 1221 | 3.9 / 3.9 | | | | | | | | Aroclor 1248 3.2 / 2.7 3.0 4.0 1.0 Aroclor 1254 2.8 / 2.8 1.0 Aroclor 1260 3.5 / 2.7 Tetrachloro-m-xylene 4.9 / 3.6 Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | Aroclor 1232 | 3.2 / 3.7 | | · | | | | | | Aroclor 1254 | Aroclor 1242 | 2.7 / 2.8 | | 2.5 | | | | | | Aroclor 1260 3.5 / 2.7 Tetrachloro-m-xylene 4.9 / 3.6 Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | Aroclor 1248 | 3.2 / 2.7 | 3.0 | | 4.0 | | 1.0 | | | Tetrachloro-m-xylene 4.9 / 3.6 Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | Aroclor 1254 | 2.8 / 2.8 | | | | 1.0 | | | | Decachlorobiphenyl 8.6 / 9.2 Affected Samples: | Aroclor 1260 | 3.5 / 2.7 | | | | | | 4.0 | | Affected Samples: | Tetrachioro-m-xylene | 4.9 / 3.6 | | | | | | | | | Decachlorobiphenyl | 8.6 / 9.2 | | | | | | | | | Affected Samples: | 6 6 | øi | | | | | | | | | | | | | | ## CORRECTED ANALYSIS SUMMARY FORMS EPA SAMPLE NO. K40333W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 SDG: 40193 BIO Contract: Case: **BIOTA** Phase Type: Lab Sample ID: 201581 10.0 Phase Weight: (g) **Date Received:** 10/15/93 Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 Dilution Factor: 1.0 05/12/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u>a</u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.050 | υ | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.23 | | | 11097-69-1 | Aroclor-1254 | 0.19 | | | 11096-82-5 | Aroclor-1260 | 0.043 | J | EPA SAMPLE NO. K40334W Lab Name: Aquatec, Inc. Lab Code: **IAUDA** Contract: 40193 91082 Case: BIO SDG:_ **BIOTA** Phase Type: Lab Sample ID: 201582 Phase Weight: 10.0 (g) Date Received: 10/15/93 Injection Volume: 1.0 (uL) Date Extracted: 04/14/94 2.0 Dilution Factor: Date Analyzed: 05/12/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Arocior-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.99 | | | 11096-82-5 | Aroclor-1260 | 0.14 | | EPA SAMPLE NO. K40335W Lab Name: Aquatec, Inc. Lab Code: **IAUDA** Case: SDG: Contract: 91082 BIO 40193 **BIOTA** Phase Type: Lab Sample ID: 201583 Phase Weight: 10.0 (g) **Date Received:** 10/15/93 1.0 04/14/94 Injection Volume: (uL) **Date Extracted:** 2.0 Date Analyzed: Dilution Factor: 05/12/94 Sulfur Clean-up: (Y/N) N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Arocior-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.90 | | | 11096-82-5 | Aroclor-1260 | 0.11 | | EPA SAMPLE NO. K40336W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 SDG: 40193 Contract: Case: BIO **BIOTA** 201584 Phase Type: Lab Sample ID: 10.0 Phase Weight: **Date Received:** 10/15/93 (g) 1.0 Injection Volume: (uL) Date Extracted: 04/14/94 Dilution Factor: 1.0 Date Analyzed: 05/12/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | ι | | 11104-28-2 | Aroclor-1221 | 0.050 | ι | | 11141-16-5 | Arocior-1232 | 0.050 | | | 53469-21-9 | Aroclor-1242 | 0.050 | | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.52 | | | 11096-82-5 | Aroclor-1260 | 0.087 | | EPA SAMPLE NO. K40337W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** Contract: 91082 Case: BIO SDG: 40193 **BIOTA** Lab Sample ID: 201585 Phase Type: 10.0 Date Received: Phase Weight: (g) 10/15/93 Injection Volume: 1.0 (uL) **Date Extracted:** 04/14/94 1.0 Date Analyzed: **Dilution Factor:** 05/12/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Arocior-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.76 | | | 11096-82-5 | Aroclor-1260 | 0.10 | | EPA SAMPLE NO. K40338W Lab Code: **AQUAI** Lab Name: Aquatec, Inc. SDG:_ 91082 Case: BIO 40193 Contract: Phase Type: **BIOTA** 201586 Lab Sample ID: 10.0 Phase Weight: 10/15/93 (g) **Date Received:** 04/14/94 1.0 **Date Extracted:** Injection Volume: _ (uL) 2.0 Dilution Factor: Date Analyzed: 05/12/94 Sulfur Clean-up: Y (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.30 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.76 | | | 11096-82-5 | Aroclor-1260 | 0.12 | | EPA SAMPLE NO. K40376W Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 Case: BIO SDG: 40193 Contract: **BIOTA** Lab Sample ID: 201633 Phase Type: 10.0 Phase Weight: **Date Received:** 10/16/93 (g) Injection Volume: 1.0 (uL) **Date Extracted:** 04/14/94 Dilution Factor: 2.0 Date Analyzed: 05/12/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.71 | | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 1.3 | | | 11096-82-5 | Aroclor-1260 | 0.10 | U | EPA SAMPLE NO. K40377W Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 Contract: Case: BIO SDG: 40193 Phase Type: **BIOTA** Lab Sample ID: 201634 Phase Weight: 10.0 (g) **Date Received:** 10/16/93 1.0 Injection Volume: (uL) 04/14/94 **Date Extracted:** 2.0 Dilution Factor: Date Analyzed: 05/13/94 Sulfur Clean-up: (Y/N) | CAS NO. COM | MPOUND | CONCENTRATION (mg/Kg) | | |------------------|----------|-----------------------|---| | 12674-11-2 Aroc | lor-1016 | 0.10 | U | | 11104-28-2 Aroc
 lor-1221 | 0.10 | U | | 11141-16-5 Aroc | lor-1232 | 0.10 | U | | 53469-21-9 Aroc | lor-1242 | 0.10 | U | | 12672-29-6 Aroc | lor-1248 | 0.99 | | | 11097-69-1 Aroci | or-1254 | 0.95 | | | 11096-82-5 Arocl | or-1260 | 0.18 | | # FORM 1 AROCLOR ANALYSIS DATA SHEET **EPA SAMPLE NO.** K40378W Lab Code: Lab Name: Aquatec, Inc. **AQUAI** 40193 91082 BIO SDG: · Contract: Case: Phase Type: **BIOTA** Lab Sample ID: 201635 Phase Weight: 10.0 **Date Received:** 10/16/93 (g) 1.0 Date Extracted: 04/14/94 Injection Volume: (uL) Dilution Factor: 5.0 Date Analyzed: 05/13/94 Sulfur Clean-up: N (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | | |------------------|--------------|-----------------------|---|--| | 12674-11-2 | Aroclor-1016 | 0.25 | ι | | | 11104-28-2 | Aroclor-1221 | 0.25 | ι | | | 11141-16-5 | Aroclor-1232 | 0.25 | ι | | | 53469-21-9 | Aroclor-1242 | 0.25 | Į | | | 12672-29-6 | Aroclor-1248 | 1.4 | | | | 11097-69-1 | Aroclor-1254 | 1.0 | | | | 11096-82-5 | Aroclor-1260 | 0.23 | 7 | | # FORM 1 AROCLOR ANALYSIS DATA SHEET EPA SAMPLE NO. K40379W Lab Code: Lab Name: Aquatec, Inc. **AQUAI** 91082 BIO SDG: 40193 Contract: Case: **BIOTA** 201636 Phase Type: Lab Sample ID: Phase Weight: 10.0 (g) **Date Received:** 10/16/93 Injection Volume: 1.0 (uL) **Date Extracted:** 04/14/94 Dilution Factor: 5.0 Date Analyzed: 05/13/94 (Y/N) Sulfur Clean-up: | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | | |------------------|--------------|-----------------------|---|--| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | | 12672-29-6 | Aroclor-1248 | 2.2 | | | | 11097-69-1 | Aroclor-1254 | 0.90 | | | | 11096-82-5 | Aroclor-1260 | 0.25 | U | | # FORM 1 AROCLOR ANALYSIS DATA SHEET EPA SAMPLE NO. K40380W Lab Code: <u>AQUAI</u> Lab Name: Aquatec, Inc. 91082 40193 Case: BIO SDG: Contract: **BIOTA** Lab Sample ID: Phase Type: 201637 10.0 Phase Weight: (g) **Date Received:** 10/16/93 Injection Volume: 1.0 **Date Extracted:** 04/14/94 (uL) Dilution Factor: 2.0 05/13/94 Date Analyzed: Sulfur Clean-up: N (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | 0 | |------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.80 | _ | | 11097-69-1 | Aroclor-1254 | 1.1 | | | 11096-82-5 | Arocior-1260 | 0.10 | U | ### PESTICIDE ANALYSES ### <u>Introduction</u> Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. ### Data Assessment ### 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. No deviations from this holding time were noted. ### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. ### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. ### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit with the following exception: Instrument HP2404 - RTX-5 5/21/94 02:18 2-Bromobiphenyl 65.1% Data for this compound in the associated samples K40333W, K40334W, K40335W, K40336W, K40337W and K40338W have been qualified as estimated due to the deviation. ### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. All surrogate recoveries were within acceptable control limits. ### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40333W | Aldrin
Heptachlor Epoxide
4,4'-DDE | 36.8%
35.0%
36.8% | |---------|--|--| | K40334W | Aldrin
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 67.6%
97.9%
43.5%
591.1% | | K40335W | Aldrin
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 66.1%
65.1%
41.7%
550.3% | | K40336W | Aldrin
gamma-Chlordane
4,4'-DDE | 42.4%
70.4%
43.4% | | K40337W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE | 54.9%
31.6%
92.1%
38.5% | | K40338W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE | * 34.3%
53.8%
122.9%
32.5% | | K40376W | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
4,4'-DDT | 34.2%
142.8%
305.1%
49.2%
608.4% | | K40377W | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
4,4'-DDT | 27.1%
127.3%
337.1%
53.6%
624.7% | |---------|---|--| | K40378W | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
4,4'-DDT | 29.0%
155.7%
304.1%
51.5%
627.1% | | K40379W | Aldrin
gamma-Chlordane
trans-Nonachtor
4,4'-DDE
4,4'-DDT | 36.1%
157.4%
356.1%
45.6%
617.7% | | K40380W | Aldrin
gamma-Chlordane
trans-Nonachlor
4,4'-DDE
cis-Nonachlor | 38.5%
140.4%
343.0%
47.4%
612.1% | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. ### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All spike recoveries except Lindane in the matrix spike duplicate were above the acceptable control limit. The elevated recoveries can be attributed to positive interference from PCBs present in the matrix spike. The blank spike associated with the MS/MSD had acceptable recoveries for all compounds. No qualifiers have been added to the samples based on matrix spike performance. ### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. Data Validation Checksheets ## Pesticide Data Validation Checklist | Data Completeness and Deliverables Is there a narrative or cover letter present? Are the samples numbers included in the narrative? X Are the sample chain-of-custodies present? X Do the chain-of-custodies
indicate any problems with sample receipt or sample condition? Holding Times | x | | |--|----------|---| | Are the samples numbers included in the narrative? X Are the sample chain-of-custodies present? X Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | x | | | Are the sample chain-of-custodies present? Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | x | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | x | | | sample receipt or sample condition? | <u> </u> | | | Holding Times | | | | | | | | Have any holding times been exceeded? | <u> </u> | | | Surrogate Recovery | | | | Are the surrogate recovery forms present? | | | | Are all the samples listed on the appropriate surrogate recovery form? | | | | Are the outliers correctly marked with an asterisk? | | X | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | x | | | If yes, were the samples reanalyzed? | | X | | Were the method blanks reanalyzed? | | X | | Matrix Spikes | | | | Is there a matrix spike recovery form present? | | | | Were matrix spikes analyzed at the required frequency? | | | | How many spike recoveries were outside of QC limits? | | | | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | _0 out of _4_ | | | | Blanks | | | | Is the method blank summary form present? | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | | | ## Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA | |--|----------|--------------|----| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any trip/field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts presblanks, and MS/MSD? | sent for | ali samples, | | | peak resolution check | X | | | | performance evaluation mixtures (BCS) | X | | | | Toxaphene multipoint calibration | X | | | | Pesticide/PBB multipoint calibration | X | | | | Pesticide/PBB mid-point standard | X | · | | | instrument blanks | X | | | | Are Forms VI 1-4 present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | x | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | x | | | | Is Form VII-1 present for each BCS analyzed for both columns? | X | | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | X | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | | X | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | x | | | | Are RPD values for all compounds < 25%? | | X | | | Analytical Sequence Check | | | | ## Pesticide/PCB Data Validation Checklist - Page 3 | | YES | NO | NA | |---|----------|---------------|-------------| | Is Form VIII present and complete for each column and each period of analyses? | <u> </u> | · | | | Was the proper analytical sequence followed? | X | | | | Cleanup Efficiency Verification | | | | | Is Form IX-1 present for each lot of Florisil cartridges used? | x | | | | Are all samples listed on the form? | X | | | | If GPC cleanup was performed, is Form IX-2 present? | | | X | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits for: | | | | | Florisil cartridge check (80-120%) | X | | | | GPC calibration (80-110%) | | | X | | Pesticide/PBB Identification | | | | | Is a Form X present for every sample in which a pesticide or PCB was detected? | X | | | | Was GC/MS confirmation provided when required? | | | X | | Is the percent difference (%D) calculated for the positive sample results on the two columns less than 25%? | | x | | | Were there any false negatives? | | | | | Compound Quantitation and Reported Detection Limit | is | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | X | | | | Chromatogram Quality | | | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | - | | | Where field duplicates submitted with the samples? | | x | | | | | | | # Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample ID | Holding | Surrogates | Surrogates - Column 1 | | - Column 2 | |------------|------------|------------|-----------------------|----------|------------| | | Time | TCX | DCB | TCX | DQB | | K40333W | OK for all | ок | ок | ок | ок | | K40334W | samples | | | | | | K40335W | | | | | | | K40336W | | | | | | | K40337W | | | | | | | K40338W | | | | | | | K40376W | | | | | | | K40376WMS | | | | <u> </u> | | | K40376WMSD | | | | | | | K40377W | | | <u> </u> | | | | K40378W | | | | | | | K40379W | | | <u></u> | | | | K40380W | | | | | | Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: Surrogate diluted out Recovery high Recovery low Unless otherwise noted, all samples are within specified limits. ### Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/17/94 | 5/21 | 5/21 | 5/22 | 5/24 | 5/25 | |-----------------------------|-----------------|---------------|--------------|---------------|---------------|---------------| | Time: | 17:19 | 02:18 | 10:37 | 10:29 | 09:01 | 00:48 | | , | initial
Cal. | Cont.
Cal. | Cont.
Cal | Gont.
Cel. | Cont.
Cal. | Cont.
Cal. | | | %RSD | %D | % D | \$2 | % D | % D | | 2-Bromobiphenyl | ok | 65.1 | ok | ok | ok | ok | | 3-Bromobiphenyl | | | | | | | | 4-Bromobiphenyl | | | | . | | | | Hexachlorobenzene | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | Aldrin | | | | | | | | Heptaclor epoxide | | | | | | | | gamma-Chlordane | | | | | | | | alpha-Chlordane | | | | | | | | trans-Nonachlor | | | | | | | | 4,4'-DDE | | | | | | | | Dieldrin | | | | | | | | 4,4'-DDD | | | - | | | | | cis-Nonachlor | | | | | | | | 4,4'-DDT | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | Toxaphene | | | | | | | | Tetrachloro-m-xylene | | | | øi. | | | | Decachlorobiphenyl | | | | | | | | Affected Samples: | | K40333W | | | | | | | | K40334W | | | | | | | | K40335W | | | | | | | | K40336W | | | | | | | | K40337W | | | | | | | | K40338W | | | | | # Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/17/94 | 5/21 | 5/21 | 5/22 | | | |-----------------------------|-----------------|---------------|---------------|---------------|------------------------|----------------| | Time: | 17:19 | 02:18 | 10:37 | 10:29 | 5/24 | 5/25 | | 1 | Initiaj
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | 09:01
Cont.
Cal. | 00:48
Cont. | | | %ASD | %D | % D | % D | %D | Cal | | 2-Bromobiphenyl | ok | ok | ok | ok | ok | % D | | 3-Bromobiphenyl | | | | | - OK | ok | | 4-Bromobiphenyl | | | | | | | | Hexachlorobenzene | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | Aldrin | | | | | | | | Heptaclor epoxide | | | | | | | | gamma-Chlordane | | | | | | | | alpha-Chlordane | | | | | | | | trans-Nonachior | | | | | | | | 4,4'-DDE | | | | | | | | Dieldrin | | | | | | | | 4,4'-DDD | | | | | | | | cis-Nonachlor | | | | | | | | 4,4'-DDT | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | oxaphene | | | | | | | | etrachioro-m-xylene | | | | | | | | ecachlorobiphenyl | | | | | | | | fected Samples: | | | | | | | | | | | | | <u> </u> - | | | F | | | | | | | | <u></u> | | | | | | · | | <u> </u> - | | | | | | | Corrected Sample Analysis Data Sheets Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. 40193 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201581 Date Received: 10/15/93 Date Extracted: 04/14/94 Date Analyzed: 05/21/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | .Q | |------------|--------------------|-----------------------|----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ
7- | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.011 | <u> </u> | | 1024-57-3 | Heptachlor Epoxide | 0.011 | उ | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.011 | Ç | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | 1.0 Dilution Factor: Client ID No. Lab Name: K40334W Aquatec, Inc. Lab
Code: AQUAI Contract: 91082 40193 Case: BIO SDG: Lab Sample ID: 201582 Phase Type: Biota 10/15/93 Date Received: Phase Weight: 10.0 Date Extracted: 04/14/94 Extraction: Soxhlet Date Analyzed: 05/21/94 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|-----|----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υsī | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | Ù | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.015 | JN | | | 1024-57-3 | Heptachlor Epoxide | 0.011 | | | | 5103 74 2 | gamma Chlordane | 0.0076 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.034 | Li | ŀ | | 60-57-1 | Dieldrin | 0.010 | Ū | Ì | | 72-54-8 | 4,4'-DDD | 0:010 | U | 1 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50 29 3 | 4,4'-DDT | 0.012 | | IR | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | \ | | 8001-35-2 | Toxaphene | 0.20 | U | 1 | Lab Name: Aquatec, Inc. K40335W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40193 Lab Sample ID: 201583 | Phase Type: | Biota | |------------------|---------| | Phase Weight: | 10.0 g | | Extraction: | Soxhlet | | Dilution Factor: | 1.0 | | Lab Sample ID: | 201583 | |------------------|----------| | Date Received: | 10/15/93 | | Date Extracted: | 04/14/94 | | Date Analyzed: | 05/21/94 | | Sulfur Clean-up: | N | | Date Analyzed: | 05/21/94 | Client ID No. | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | α | |------------|--------------------|--------------------------|-----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 . | uз | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | Ū | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | υ. | | 309-00-2 | Aldrin | 0.017 | JN | | 1024-57-3 | Heptachlor Epoxide | 0.013 | | | 5103-74-2 | gamma-Chlordane | 0.0079 | ゴル | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.031 | J | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50 29 3 | 4,4'-DDT | 0.011 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | R Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40336W 40193 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201584 Date Received: 10/15/93 Date Extracted: 04/14/94 Date Analyzed: 05/21/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | UJ | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ü | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.013 | 17 | | 1024-57-3 | Heptachlor Epoxide | 0.0090 | | | 5103-74-2 | gamma-Chlordane | 0.0051 | 77 | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.015 | 7 | | 60-57-1 | Dieldrin | 0.010 | υ | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Soxhlet 1.0 Extraction: Dilution Factor: Client ID No. K40337W Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 BIO Case: SDG: 40193 201585 Lab Sample ID: Phase Type: 10/15/93 Biota Date Received: Phase Weight: 10.0 Date Extracted: 04/14/94 9 Date Analyzed: Sulfur Clean-up: 05/21/94 N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|-----|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | UJ. | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | - U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U . | | | 309-00-2 | Aldrin | 0.014 | JN | | | 1024-57-3 | Heptachlor Epoxide | 0.012 | 4 | | | 5103-74-2 | gamma-Chlordane | 0.0063 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | • | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.027 | 5 | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.010 | U | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50-29-3 | 4,4'-DDT | 0.010 | U | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. K40338W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40193 Lab Sample ID: 201586 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201586 Date Received: 10/15/93 Date Extracted: 04/14/94 Date Analyzed: 05/21/94 Sulfur Clean-up: N Client ID No. | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------------|-----------------------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | UJ. | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | υ | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.019 | 5 | | 1024-57-3 | Heptachlor Epoxide | 0.016 | JN | | 5103 74 2 | gamma Chlordane | 0.0058 | F | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.027 | 7 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | 1.0 Dilution Factor: Client ID No. Lab Name: Aquatec, Inc. K40376W Lab Code: AQUAI Contract: 91082 BIO SDG: Case: 40193 Lab Sample ID: 201633 Phase Type: Biota 10/16/93 Date Received: Phase Weight: 10.0 Date Extracted: 04/14/94 Extraction: Soxhlet 05/21/94 Date Analyzed: Sulfur Clean-up: N. | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q. | | |-----------------------|--------------------|-----------------------|----|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.040 | 7 | | | 1024-57-3 | Heptachlor Epoxide | 0.034 | | | | 5103-74-2 | gamma-Chlordane | 0.014 | f | २ | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachlor | 0.010 | | R | | 72-55-9 | 4,4'-DDE | 0.043 | 7 | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.016 | | | | 5103-73-1 | cis-Nonachior | 0.0050 | Ū | | | 50-29-3 | 4,4'-DDT | 0.012 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | υ | • | | 8001-35-2 | Toxaphene | 0.20 | U | | Client ID No. K40377W 40193 ## PESTICIDE, PBB ANALYSIS DATA SHEET Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 201634 Lab Sample ID: 10/16/93 Phase Type: **Biota** Date Received: Phase Weight: 10.0 **Date Extracted:** 04/14/94 Extraction: Soxhlet Date Analyzed: 05/21/94 Dilution Factor: 1.0 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------------------|--------------------|-----------------------|-----|----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | n U | <u>.</u> | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | İ | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | İ | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | İ | | 58-89-9 | gamma-BHC | 0.0050 | . U | | | 309-00-2 | Aldrin | 0.044 | 7 | İ | | 1024-57-3 | Heptachlor Epoxide | 0.038 | | i _ | | - 5103-74-2 | gamma Chlordane | 0.015 | | IR. | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | ١. | | 39765-80-5 | trans Nonachler | -0.0007 | | IR | | 72-55-9 | 4,4'-DDE | 0.045 | JN | l | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.016 | |] | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 1 | | 50-29-3 | 4,4'-DDT | 0.013 | | 1 R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | 8001-35-2 | Toxaphene | 0.20 | U | | | | | | | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: Lab Samole ID: Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201635 Date Received: 10/16/93 Date Extracted: 04/14/94 Date Analyzed: 05/21/94 Sulfur Clean-up: N Client ID No. K40378W 40193 | COMPOUND | CONCENTRATION
(mg/Kg) | a | |--------------------|---|--| | 2-Bromobiphenyl | 0.010 | U | | 3-Bromobiphenyl | 0.010 | U | | 4-Bromobiphenyl | 0.010 | U | | Hexachlorobenzene | 0.0050 | U | | gamma-BHC | 0.0050 | U | | Aldrin | 0.052 | J | | Heptachlor Epoxide | 0.043 | | | gamma Chiordane | 0.017 | | | alpha-Chlordane | 0.0050 | U | | trans-Nonachlor | 0.011 | | | 4,4'-DDE | 0.047 | NC | | Dieldrin | 0.010 | U | | 4,4'-DDD | 0:018 | | | cis-Nonachlor | 0.0050 | U | | 4,4' DDT | 0.014 | | | Hexabromobiphenyl | 0.020 | U | | Toxaphene | 0.20 | U | | | 2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma Chlordane alpha-Chlordane trans Nensehler 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | 2-Bromobiphenyl 0.010 3-Bromobiphenyl 0.010 4-Bromobiphenyl 0.010 Hexachlorobenzene 0.0050 gamma-BHC 0.0050 Aldrin 0.052 Heptachlor Epoxide 0.043 gamma-Chlordane
0.017 alpha-Chlordane 0.0050 trans-Nensehler 0.011 4,4'-DDE 0.047 Dieldrin 0.010 4,4'-DDD 0.018 cis-Nonachlor 0.0050 | 05/21/94 N # PESTICIDE, PBB ANALYSIS DATA SHEET Soxhlet 1.0 Extraction: Dilution Factor: Client ID No. K40379W Aquatec, Inc. Lab Name: Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40193 201636 Lab Sample ID: Phase Type: **Biota** Date Received: 10/16/93 Phase Weight: 10.0 04/14/94 Date Extracted: Date Analyzed: Sulfur Clean-up: | $\exists R$ | |-------------| | | | $\exists R$ | | 一, | | | | | | | | 二R | | | | | | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40380W 40193 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201637 Date Received: 10/16/93 Date Extracted: 04/14/94 Date Analyzed: 05/21/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|---|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.035 | 5 | | | 1024-57-3 | Heptachlor Epoxide | 0.029 | | | | 5103-74-2 | gamma-Chlordane | 0.012 | | R | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | | 39765-80-5 | trans-Nonachlor | 0.0088 | | R | | 72-55-9 | 4,4'-DDE | 0.038 | 5 | • | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.014 | | | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | | 50-29-3 | 4,4'-DDT | 0.011 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | Ü | | ## MERCURY ANALYSES #### Introduction Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: ### Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). ### Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - Duplicate analysis not within control limits. - Correlation coefficient for MSA is less than 0.995. ### Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. ### Data Assessment ### 1. Holding Time The recommended holding times for mercury analyses is 28 days from tissue homogenization. All samples were analyzed within this holding time. ### 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. #### 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. ### 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. ### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. #### 3.3 CRDL Standard The CRDL standard recovery was slightly above the acceptable limit. No data fell in the affected range; therefore, no qualifiers were added to the samples. 5 ### 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. ### 4.1 Matrix spike Recovery for the matrix spike was within acceptable limits. ### 4.2 Laboratory Duplicate The difference between laboratory duplicates was within acceptable limits. ### 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. ### 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. ### 7. Furnace QC No furnace analyses were performed. ### 8. Method of Standard Additions (MSA) No MSA were performed. ### 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the quidelines specified in the method. **Data Validation Checksheets** ### Inorganic Data Validation Checklist | | YES | NO | NA | |--|-----------|-------------|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the sample numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | X | | | | Sample No.? | X | | | | SDG No.? | X | | | | Correct units? | × | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | ls the distillation log for mercury present? | × | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP | | | X | | Flame AA | | | X | | Furnace AA | | | X | | Mercury | × | | | | Cyanides | | | X | | Is the data legible? | × | | | | Is the data properly labeled? | X | | | | Holding Times | | | | | Were mercury analyses performed within 28 days? | <u> x</u> | | | ## Inorganic Data Validation Checklist - Page 2 | | YES | NO | NA | |---|----------|-------------|-------------| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | | | Are all forms complete? | <u> </u> | | | | Are correct units indicated on Form I's? | X | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | × | | | | Was a brief physical description of samples given on Form I's? | | X | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | | | x | | Is a record of 5 point calibration present for Hg analysis? | X | | | | Is a record of 4 point calibration present for: | | | | | Flame AA? | | | <u> </u> | | Furnace AA? | | | X | | Cyanides? | | | X | | is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | X | | is correlation coefficient less than .995 for: | | | | | Mercury Analysis? | X | | | | Cyanide Analysis? | | | x | | Atomic Absorption Analysis? | | | X | | Form II A (Initial and Continuing Calibration Verifica | tion) | | | | Present and complete for every metal and cyanide? | X | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | X | | Hg (80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | X | ## Inorganic Data Validation Checklist - Page 3 | | YES | NO | NA | |--|-------------|----|----------| | Was continuing calibration
performed every 10 samples or every 2 hours? | s X | | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | <u>.</u> | | Was a mid-range calibration verification standard distilled and analyzed for cyanide analysis? | | | X | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | | × | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | X | | Form III (Initial and Continuing Calibration Blanks) | <u> </u> | | | | Present and complete? | X | | | | Was an initial calibration blank analyzed? | X | | | | Was a continuing calibration blank analyzed after ever 10 samples or every 2 hours (which ever is more frequent)? | y X | | | | Are all calibration blanks (when IDL <crdl) (crdls)?<="" contract="" detection="" equal="" less="" limits="" or="" required="" td="" than="" the="" to=""><td>×</td><td></td><td></td></crdl)> | × | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | × | | Form III (Preparation Blank) | Dis | | | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | X | | | | each batch of digested samples? | × | | | | each matrix type? | X | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | × | | | CHDL when IDL is less than or equal to CRDL? | | | | | | YES | NO | NA | |--|-------------|-------------|-------------| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | X | | Is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | X | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | | | | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | X | | Are all Interference Check Sample results inside the control limits (±20%)? | | | X | | If no, is concentration of Al, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | X | | Form V A (Spiked Sample Recovery - Pre-Digestion/ | Pre-Distil | lation) | | | Present and complete for: | | | | | each SDG? | <u> </u> | | | | each matrix type? | X | | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | X | | | | If no, is sample concentration greater than or equal to four times spike concentration? | | | X | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | | | X | | Are any spike recoveries: | | | | | less than 10%? | | <u> </u> | | | between 10-74%? | | X | | | between 126-200%? | | X | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | | - | | Present and complete for: | | | | | each SDG? | x | | | | | | | | | | YES | NO | NA | |---|-----|----|-------------| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | X | | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | X | | | | If no, are all results outside the control limits flagged with an * on Form I's and VI? | | | X | | Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | | X | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | × | | | Form VII (Laboratory Control Sample) | | | | | Was one LCS prepared and analyzed for: | | | | | each SDG? | X | | | | each batch samples digested/distilled? | X | | | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | Is LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | X | | each matrix type? | | | X | | Was field blank(s) used for Serial Dilution Analysis? | | | X | | Are results outside control limit flagged with an "E"" on Form I's and Form IX when initial concentration on Form IX is equal to 50 times IDL or greater. | | | X | | Are any % difference values: | | | | | > 10%? | | | X | | ≥100%? | | | X | | Furnace Atomic Absorption (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | <u> </u> | | | | | | | | YES | NO | NA | |--|-----------|----|----| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | ·
———- | | X | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X | | Is analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | | | | Present? | | X | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | Х | | Was MSA required for any sample but not performed? | | X | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | | × | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | X | | Field Blank | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | X | | Form X, XI, XII (Verification of Instrumental Paramet | ers) | | | | Is verification report present for: | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation Factors (annually)? | | | X | | ICP Linear Ranges (quarterly)? | | | X | | Form X (Instrument Detection Limits) | | | | | Are IDLs present for: | • | | | | all the analytes? | X | | | | all the instruments used? | X | | | | | | | | | | YES | NO | NA | |---|-----|---------|----| | Is IDL greater than CRDL for any analyte? | | X | | | If yes, is the concentration of Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than 5 x IDL. | | | X | | Was any sample result higher linear range of ICP. | - | | X | | Was any sample result higher than the highest calibration standard for non-ICP parameters? | | × | | | If yes for any of the above, was the sample diluted to obtain the result on Form 1? | | <u></u> | X | | | | | | Corrected Sample Analysis Data Sheets # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Code: AQUAI | Name: AQUAT | EC | | Contract: 91 | 108 | 2 | K40333W | |---|-------------|------------|------------|-----------------|------------|-------------|-----------------| | Vel (low/med): LOW | ode: AQUAI | _ Ca | se No.: BI | SAS No.: | : _ | | SDG No.: 40193 | | Concentration Units (ug/L or mg/kg dry weight): MG/KG CAS No. | ix (soil/wa | ter): FISH | | | La | b Sampl | le ID: 201581 | | CAS No. | (low/med) | : LOW_ | _ | | Da | te Rece | eived: 10/15/93 | | CAS No. | lids: | 100. | 0 | | | | | | 7429-90-5 Aluminum NR 7440-36-0 Antimony NR 7440-38-2 Arsenic NR 7440-39-3 Barium NR 7440-41-7 Beryllium NR 7440-43-9 Cadmium NR 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7439-89-6 Copper NR 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7440-02-0 Nickel NR 7440-02-7 Potassium NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-28-0 Thallium NR 7440-28-0 Vanadium NR 7440-66-6 Zinc NR | Cond | centration | Units (ug | /L or mg/kg dry | 7 W | veight): | MG/KG | | 7440-36-0 Antimony NR 7440-38-2 Arsenic NR 7440-39-3 Barium NR 7440-41-7 Beryllium NR 7440-70-2 Cadmium NR 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7439-89-6 Iron NR 7439-92-1 Lead NR 7439-95-4 Magnesium NR 7439-97-6 Mercury 0.08 CV 7440-02-0 Nickel NR 7440-09-7 Potassium NR 7440-22-4 Silver NR 7440-28-0 Thallium NR 7440-66-6 Zinc NR | | CAS No. | Analyte | Concentration | С | Q | м | | T440-36-0 | - | 7429-90-5 | Aluminum | | - | | NR | | 7440-38-2 | | | | | - | | | | T440-39-3 | | | | | - | | | | 7440-43-9 7440-70-2 7440-47-3 7440-48-4
7440-50-8 7439-89-6 7439-95-4 Magnesium 7439-96-5 Marcury 7440-02-0 Nickel 7440-02-0 Nickel 7440-02-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc NR | 1 | | | | - | | NR | | 7440-70-2 7440-47-3 7440-48-4 7440-50-8 7439-89-6 7439-95-4 Magnesium 7439-97-6 Mercury 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7740-23-5 Sodium 7440-66-6 Zinc NR | j 7 | | | | | | | | 7440-47-3 Chromium NR 7440-48-4 Cobalt NR 7440-50-8 Copper NR 7439-89-6 Iron NR 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7440-02-0 Nickel NR 7440-09-7 Potassium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR | | | | | | | | | 7440-48-4 | | | | | | | | | 7440-50-8 7439-89-6 Iron 7439-92-1 Lead 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Nickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-28-0 Thallium 7440-66-6 Zinc NR | | | | | <u> </u> | | | | 7439-89-6 Iron | | | | | | | | | 7439-92-1 Lead NR 7439-95-4 Magnesium NR 7439-96-5 Manganese NR 7440-02-0 Nickel NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR | | | | | _ | | | | 7439-95-4 Magnesium 7439-96-5 Manganese 7440-02-0 Mickel 7440-09-7 Potassium 7782-49-2 Selenium 7440-22-4 Silver 7440-23-5 Sodium 7440-62-2 Vanadium 7440-66-6 Zinc NR | | | | | | | | | 7439-96-5 Manganese | 1 | | | | _ | | | | 7439-97-6 Mercury 0.08 CV 7440-02-0 Nickel NR 7440-09-7 Potassium NR 7782-49-2 Selenium NR 7440-22-4 Silver NR 7440-23-5 Sodium NR 7440-62-2 Vanadium NR 7440-66-6 Zinc NR | | | | | _ | | | | 7440-02-0 Nickel | | | | | _ | | | | 7440-09-7 Potassium | 1 | | | 0.08 | _ | | | | 7782-49-2 Selenium | | | | | _ | | | | 7440-22-4 Silver | | | l . | | _ | | | | 7440-23-5 Sodium | | | | | _ | | | | 7440-28-0 Thallium NR NR NR 7440-62-2 Vanadium NR NR NR | | | | | <u> </u> _ | | | | 7440-62-2 Vanadium NR NR NR | | | | | | | | | 7440-66-6 Zinc NR | 1 ' | | | | - | | | | | 1 | | | | l — l | | | | | 1. | 7440-66-6 | | | lI | | | | | - | | Cyanide | | - | | NK | | lor Before: Clarity Before: Texture: | Before: | | Clari | ty Before: | Ai. | - | Texture: | | lor After: Clarity After: Artifacts: _ | After: | | Clari | ty After: | | _ | Artifacts: | | mments: | ents: | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AOUA | TEC | | Contract: 9 | 1082 | | K40334W | |--------------|-------------|---------------------|-----------------|---|-------------|----------------| | | | | | • | | SDG No.: 40193 | | o couc. ngon | | DC NO DI | | - | | | | trix (soil/w | ater): FISH | _ | | Lab | Sampl | e ID: 201582 | | vel (low/med |): LOW_ | - | | Dat | e Rece | ived: 10/15/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | | | | 1_1_ | | | | | 7429-90-5 | | | $ _ _$ | | NR | | | | Antimony_ | | _ _ | | NR | | | | Arsenic_ | | - - | | NR | | | | Barium_ | | - - | | NR | | | | Beryllium | | - - | | NR
NR | | | | Cadmium
 Calcium | | - - | | NR NR | | | | Chromium | | - - | | NR | | | | Cobalt | | - - | | NR | | | | Copper | | 1-1- | | NR | | | 7439-89-6 | Iron | | - - | | NR | | | | Lead | | - - | | NR | | | | Magnesium | | [-[- | | NR | | | | Manganese | | - - | | NR | | | | Mercury | 0.03 | - - | | CV | | | | Nickel' | | - - | | NR | | | 7440-09-7 | | | - - | | NR | | • | 7782-49-2 | Selenium | | - - | | NR | | | 7440-22-4 | Silver | | - - | | NR | | | 7440-23-5 | Sodium | | - - | | NR | | | | Thallium | | - - | | NR | | | 7440-62-2 | Vanadium_ | | - - | | NR | | | 7440-66-6 | Zinc | | - - | | NR | | | | Cyanide | | 1-1- | | NR | | | | | | | | | | or Before: | | Clari | ty Before: | <u>ø. </u> | | Texture: | | or After: | | Clari | ty After: | | | Artifacts: | | | | | | | | | FORM I - IN #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INORGANIC . | ANALYSES DATA S | SHE | ET | | |---------------------------------|------------------------|-------------|-----------------|--------------|---------------|------------------| | → Name: AQUATEC Contract: 91082 | | | | | | K40335W | | ab Code: AQU | AI Ca | se No.: BI | O SAS No. | : | | SDG No.: 40193 | | | | | | T -1 | | .]. TD. 201502 | | atrix (SOII) | water): FISH | _ | | Trai | o samp | ple ID: 201583 | | evel (low/med | d): LOW_ | _ | | Dat | te Red | ceived: 10/15/93 | | Solids: | 100. | 0 | | | • | | | Co | oncentration | Units (ug | /L or mg/kg dry | y we | eight | : MG/KG | | | CAS No. | Analyte | Concentration | c | Q | м | | | 7429-90-5 | Aluminum | \ | - - | | NR NR | | | 7440-36-0 | Antimony | | - - | | NR | | | 7440-38-2 | Arsenic - | | - - | | NR | | | 7440-39-3 | Barium - | | - - | | - NR | | | 7440-41-7 | Beryllium | | | | NR | | | | Cadmium_ | | | | [NR | | | | Calcium_ | | | | NR | | | | Chromium_ | | _ _ | | NR | | | 7440-48-4 | | | <u> _</u> _ | | NR | | | | Copper | | _ _ | | NR | | | 7439-89-6 | Iron | | _ _ | | NR | | | 7439-92-1 | Lead | | _ - | | NR | | | | Magnesium | | _ - | | NR | | | | Manganese | 0.00 | - - | | NR CV | | | 7439-97-6 | Mercury | 0.02 | - - | | - NR | | | 7440-02-0
7440-09-7 | Potassium | | - - | | - NR | | | 7782-49-2 | Selenium | | - - | | - NR | | | | Silver | | - - | | - NR | | | 7440-23-5 | Sodium | | - - | · — · · · · · | - NR | | | | Thallium | | - | | - NR | | | | Vanadium - | | - - | | - NR | | | 7440-66-6 | Zinc | | - - | | - NR | | | 7440 00 0 | Cyanide | | - - | | NR | | | | | | | - | | | lor Before: | | Clarit | y Before: | <u>•</u> | | Texture: | | lor After: | | Clarit | y After: | | | Artifacts: | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INORGANIC | ANALYSES DATA : | SHE | | | |---------------|--------------|---------------------|-----------------|-----|-------------|-----------------| | يى Name: AQU | ATEC | | Contract: 93 | 108 | 32 | K40336W | | ab Code: AQU | | | | | | SDG No.: 40193 | | atrix (soil/ | water): FISH | <u>_</u> | | La | ab Samp | ole ID: 201584 | | evel (low/med | i): LOW_ | _ | | Da | te Rec | eived: 10/15/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y w | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony_ | | | | NR | | | 7440-38-2 | Arsenic_ | | | | NR | | | | Barium | | _ | | NR | | | | Beryllium | | _ | | NR | | | | Cadmium_
Calcium | | | | NR
NR | | | | Chromium | | (-I | | NR NR | | | | Cobalt | | [-] | | - NR | | | 1 | Copper | | - | | - NR | | | | Iron | | 1-1 | | · NR | | | | Lead | | 1-1 | | NR | | | | Magnesium | | - | | NR | | | | Manganese | | - | | NR | | | | Mercury | 0.04 | 1-1 | | cv | | | | Nickel - | | - | | NR | | | 7440-09-7 | Potassium | | | | NR | | · | | Selenium_ | | _ | | NR | | | | Silver | | 1=1 | | NR | | | | Sodium | | _ | | NR | | | | Thallium_ | | l_I | | NR | | | | Vanadium_ | | l_l | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | | | NR | | lor Before: | | Clari | ty Before: | ø. | _ | Texture: | | lor After: | | Clari | ty After: | | _ | Artifacts: | | | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 9: | 1082 | | K40337W | |--------------|--|--|-----------------|------|--------|---| | | | | | | | SDG No.: 40193 | | atrix (soil/ | | | | | | Le ID: 201585 | | evel (low/me | d): LOW_ | | | Dat | e Rece | eived: 10/15/93 | | Solids: | 100. | 0 | | | | | | С | oncentration | Units (ug/ | 'L or mg/kg dry | y we | ight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | 7440-38-2
7440-39-3
7440-41-7
7440-43-9
7440-70-2
7440-47-3
7440-48-4
7440-50-8
7439-89-6
7439-95-4
7439-95-4
7439-96-5
7439-97-6
7440-02-0
7440-09-7
7782-49-2
7440-23-5
7440-28-0 | Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium Thallium Vanadium Zinc Cyanide | 0.03 | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
N | | olor Before: | | Clarit | y Before: | Øs. | | Texture: | | olor After: | | Clarit | y After: | | | Artifacts: | | omments: | | | | | | | # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | a. Na | ame: A | TAUQA | EC | | | Contract: 9: | LOS | 32 | | K40338W | |--------|--------|-------|---------------------------|-------|---------------------|-----------------|------------|-------------|----------|-------------| | Lab Co | ođe: A | IAUQA | ' <u></u> | Ca | se No.: BI | SAS No.: | : _ | | SDC | No.: 40193 | | Matrix | k (soi | ll/wa | ter): | FISH | | | L | ab Sampl | e II | D: 201586 | | Level | (low/ | med) | : | LOW | | | Da | ate Rece | ived | 1: 10/15/93 | | | | | | _ | _ | | | | | | | Soli | las: | | | 100. | U | | , | | | | | | | Con | centra | ation | Units (ug | /L or mg/kg dry | 7 1 | weight): | MG/ | 'KG | | | | | CAS No | · · | Analyte | Concentration | С | Q | М | | | | | - | 7429-9 | 0-5 | Aluminum | | - | | NR | | | | | | 7440-3 | | Antimony | | - | | NR | | | | | | 7440-3 | 8-2 | Arsenic | | _ | | NR | | | | | | 7440-3 | | Barium_ | | _ | | NR | | | | | | 7440-4 | | Beryllium | | _ | | NR | | | | | |
7440-4
7440-7 | | CadmiumCalcium | | _ | | NR
NR | | | | | | 7440-4 | | Chromium | | - | | NR | | | | | | 7440-4 | | Cobalt | | - | | NR | | | | | | 7440-5 | | Copper | | - | | NR | | | | |] · | 7439-8 | 9-6 | Iron | | - | | NR | | | | | 1. | 7439-9 | 2-1 | Lead | | | | NR | | | | | | 7439-9 | | Magnesium | | _ | | NR | | | | | | 7439-9 | | Manganese | | _ | | NR | | | | | | 7439-9 | | Mercury_ | 0.03 | _ | | CV | | | | | | 7440-0
7440-0 | | Nickel
Potassium | | _ | | NR
NR | | | | | | 7440-0
7782 - 4 | | Selenium | | — | | NR | | | | | | 7440-2 | | Silver | | - | | NR | | | | | | 7440-2 | | Sodium | | - | | NR | | | | | | 7440-2 | | Thallium | | _ | | NR | | | | | | 7440-6 | | Vanadium - | | _ | | NR | | | | | | 7440-6 | 6-6 | Zinc | | _ | | NR | | | | |]- | - | | Cyanide | | _ | | NR | | | olor | Befor | e: _ | | | Clarit | y Before: | li. | | Text | ture: | | olor | After | ·: _ | | | Clarit | y After: | | <u>-</u> | Art: | ifacts: | | ommer | nts: | | | | | | | | ··· | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: | AQUATEC | | Contract: 91 | 108 | 2 | K40376W | |---------------|------------------------|------------------------|-----------------|--|--------|------------------| | | | · · | | | | SDG No.: 40193_ | | Matrix (so | oil/water): FIS | H | | La | b Samp | ole ID: 201633 | | Level (low | /med): LOW_ | _ | | Da | te Red | ceived: 10/16/93 | | & Solids: | 100 | . 0 | | | | | | | Concentration | units (ug | /L or mg/kg dry | 7 W | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | - NR | | | 7440-36-0 | Antimony | | | | NR | | | 7440-38-2 | Arsenic | | | | NR | | | 7440-39-3 | | | - | | NR NR | | | 7440-41-7
7440-43-9 | | | - | | NR NR | | | 7440-70-2 | Calcium | | - | | - NR | | | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | | | - | | NR | | | 7440-50-8 | Copper | | | | NR | | | 7439-89-6 | Iron | | | | NR | | | 7439-92-1 | Lead | | - | | NR | | $\overline{}$ | 7439-95-4
7439-96-5 | Magnesium
Manganese | | - | | NR
NR | | | 7439-97-6 | Mercury | 0.02 | - | | - CV | | | 7440-02-0 | Nickel - | | - | | NR | | | 7440-09-7 | Potassium | | | | NR NR | | | 7782-49-2 | Selenium_ | | | |] NR | | | 7440-22-4 | Silver | | _ | | NR | | | 7440-23-5 | Sodium | | _ | | NR | | | 7440-28-0 | Thallium_ | | _ | | NR | | | 7440-62-2
7440-66-6 | Vanadium_
Zinc | | - | | NR
NR | | | 7440 00 0 | Cyanide | | - | | NR | | | | | | <u> </u> | | | | Color Befo | re: | Clarit | ty Before: | j ; | - | Texture: | | color Afte | r: | Clarit | ty After: | | - | Artifacts: | | Comments: | | | | | | | FORM I - IN # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Na | ame: AQUA | TEC | | Contract: 9 | 108 | 32 | K40377W | |--------|-----------|--------------|-----------------------|---------------------------------------|-------------|----------------|-----------------| | Lab Co | ode: AQUA | .I_ Ca | se No.: BI | o sas no. | : _ | | SDG No.: 40193_ | | Matrix | k (soil/w | rater): FISH | _ | | L | ab Sampl | e ID: 201634 | | Level | (low/med |): LOW_ | _ | | Da | ate Rece | ived: 10/16/93 | | % Soli | ids: | 100. | 0 | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y v | weight): | MG/KG | | | | CAS No. | Analyte | Concentration | С | Q | м | | | | 7429-90-5 | Aluminum | | - | - | NR | | | | | Antimony - | | - | | NR | | | | 7440-38-2 | Arsenic | | | | NR | | | | 7440-39-3 | Barium | | _ | | NR | | | | 7440-41-7 | Beryllium | | _ | | NR | | | | 1 | CadmiumCalcium | | - | | NR
NR | | | | 4 | Chromium | | - | | NR NR | | | | | Cobalt | | - | | NR | | | | | Copper | | - | | NR | | | | | Iron_ | | - | | NR | | | | 7439-92-1 | Lead | | - | | NR | | | | 7439-95-4 | Magnesium | | _ | | NR | | | | 7439-96-5 | Manganese | | | | NR | | | | 7439-97-6 | Mercury_ | 0.03 | B | | CV | | | | | Nickel | | _ | | NR | | | • | | Potassium
Selenium | | - | | NR | | | | | Silver | | - | | NR
NR | | | | | Sodium | | - | | NR | | | | | Thallium | | - | | NR | | | | | Vanadium_ | · · · · · · · · · · · · · · · · · · · | - | | NR | | | | 7440-66-6 | Zinc | | - | | nr | | | | | Cyanide | | _ | | NR | | | | l | | | ۱ | ll | | | Color | Before: | | Clarit | ty Before: | ø is | _ | Texture: | | Color | After: | | Clarit | ty After: | | _ | Artifacts: | | Commen | its: | | | | | | | | | | | | | | | | FORM I - IN # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 93 | 108 | 32 | K40378W | |---------------|--------------|-------------|-----------------|------------|---------------|-----------------| | | | | O SAS No.: | | | SDG No.: 40193_ | | atrix (soil/ | water): FISH | <u>-</u> | | La | b Sampl | e ID: 201635 | | evel (low/med | d): LOW_ | | | Da | ite Rece | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | 7 W | eight): | MG/KG | | • | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | | | NR | | | 7440-36-0 | Antimony_ | | -1 | | NR | | | 7440-38-2 | Arsenic | | -1 | | NR | | | | Barium | | - | | NR | | | 7440-41-7 | Beryllium | [] | - | [| NR | | | | Cadmium | | -1 | | NR | | | 7440-70-2 | | | -1 | | NR | | | | Chromium | | - | | NR | | | 7440-48-4 | Cobalt | | - | | NR | | | 7440-50-8 | Copper | | -1 |) | NR | | | 7439-89-6 | Iron | | - | | NR | | | 7439-92-1 | Lead | | - | | NR | | | | Magnesium | | -1 | | NR | | <u> </u> | | Manganese | | -1 | | NR | | | | Mercury | 0.02 | - | | CV | | | | Nickel - | | -1 | | NR | | | 7440-09-7 | | | -1 | | NR | | | 7782-49-2 | | | - | | NR | | | | Silver | | -1 | | NR | | | 7440-23-5 | Sodium | | - | - | NR | | | 7440-28-0 | Thallium | | -1 | | NR | | | 7440-62-2 | Vanadium_ | | -1 | | NR | | | 7440-62-2 | Zinc | | - | | NR | | | 7440 00 0 | Cyanide | | - | | NR | | | | cyaniue_ | | | | | | lor Before: | | Clarit | ty Before: | 6 . | | Texture: | | lor After: | | Clarit | ty After: | | | Artifacts: | | mments: | | | | | | | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | _o Name: AQUA | TEC | | Contract: 91 | 1082 | ! | K40379W | |---------------|--------------|-------------|-----------------|----------|---------------|-----------------| | ab Code: AQUA | I_ Ca | se No.: BIG | SAS No.: | : | | SDG No.: 40193 | | trix (soil/w | water): FISH | _ | | Lab | Sampl | le ID: 201636 | | evel (low/med | l): LOW_ | | | Dat | e Rece | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | eight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | 7429-90-5 | Aliminim | | - | | NR | | | | Antimony | | - - | | NR
NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium | | - - | | NR | | | | Beryllium | | - - | | NR | | | 7440-43-9 | Cadmium | | - - | | NR | | | | Calcium | | | | NR | | | | Chromium | | - - | | NR | | | | Cobalt | | - - | | NR | | | | Copper | | -1- | [| NR | | | 7439-89-6 | Iron | | - - | | NR | | | | Lead | | - - | | NR | | | | Magnesium | | | | NR | | | | Manganese | | - - | | NR | | | | Mercury | 0.02 | - - | | CV | | | | Nickel - | | - - | | NR | | | | Potassium | | - - | | NR | | • | 7782-49-2 | Selenium | | - - | | NR | | | | Silver - | | - - | | NR | | | 7440-23-5 | Sodium | | - - | | NR | | | 7440-28-0 | Thallium | | - - | | NR | | | 7440-62-2 | Vanadium - | | - - | | NR | | | 7440-66-6 | Zinc - | | - - | | NR | | | | Cyanide | | - - | | NR | | lor Before: | | Clarit | y Before: | <u> </u> | - | Texture: | | lor After: | | Clarit | y After: | | | Artifacts: | | mments: | FORM I - IN # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 9 | 1082 | K40380W | |---------------|------------------------|----------------------|-----------------|----------|---------------------------------| | | | | | | SDG No.: 40193 | | atrix (soil/ | water): FISH | _ | | Lab Sam | ple ID: 201637 | | evel (low/med | i): LOW_ | | | Date Re | ceived: 10/16/93 | | Solids: | 100. | 0 | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y weight |): MG/KG | | | CAS No. | Analyte | Concentration | c Q | м | | | | | | | _ | | | 7429-90-5 | | | _ | | | • | | Antimony_ | | - | NR | | | | Arsenic_ | | - | NR | | | | Barium | | - | NR | | | | Beryllium
Cadmium | | | NR | | | | Calcium | | | NR
NR | | | | Chromium | | - | | | | | Cobalt | | | NR
NR | | | 1 | | | | $-\left \frac{NR}{NR} \right $ | | | 7440-50-8
7439-89-6 | Copper | | | $-\left \frac{NR}{NR} \right $ | | | | Iron | | - | | | | 4 | | | | NR | | | | Magnesium | | - | NR
NR | | | | Manganese | 0.02 | | | | | E . | Mercury_
Nickel | 0.02 | | CV | | | | Potassium | | | - NR | | | | Selenium | | - | - NR | | | 7440-22-4 | | | - | - NR | | | | Sodium | | | - NR | | | | Thallium | | | $-\left \frac{NR}{NR} \right $ | | | | Vanadium_ | | | - NR | | | 7440-62-2 | Zinc | | | - NR | | | 7440-00-0 | Cyanide | | - | $-\left \frac{NR}{NR}\right $ | | | | · — | | | - (| | lor Before: | | Clari | ty Before: | <u> </u> | Texture: | | lor After: | | Clari | ty After: | | Artifacts: | | mments: | | | | | | ## MISCELLANEOUS PARAMETERS ### MISCELLANEOUS PARAMETERS | Sample ID | Description | Sex | %Lipid | |-----------|-------------------------------|--------|--------| | K40333W | Trowbridge Dam - White Sucker | male | 0.88 | | K40334W | Trowbridge Dam - White Sucker | male | 0.83 | | K40335W | Trowbridge Dam - White Sucker | male | 0.59 | | K40336W | Trowbridge Dam - White
Sucker | male | 0.55 | | K40337W | Trowbridge Dam - White Sucker | male | 1.01 | | K40338W | Trowbridge Dam - White Sucker | male | 1.29 | | K40376W | Plainwell Dam - White Sucker | male | 3.40 | | K40377W | Plainwell Dam - White Sucker | male | 3.30 | | K40378W | Plainwell Dam - White Sucker | male | 3.78 | | K40379W | Plainwell Dam - White Sucker | female | 2.76 | | K40380W | Plainwell Dam - White Sucker | female | 2.96 | #### DATA REVIEW FOR # ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 40202 PCB, PESTICIDE AND MERCURY ANALYSES BIOTA - FISH Analyses performed by: Aquatec, Inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York #### **Summary** The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40202 for the Biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and the corrected sample results. Analyses were performed on the following samples: | Sample ID Lab | | Species | Description | Sample Location | Analysis | | | |---------------|--------|---------|-------------|-------------------|----------|--------|--| | | | | | | PCB | %Lipid | | | K40360F | 208350 | carp | fillet | Plainwell Dam | x | х | | | K40360R | 208351 | carp | carcass | Plainwell Dam | | х | | | K40365F | 208352 | carp | fillet | Plainwell Dam | X | x | | | K40365R | 208353 | carp | carcass | Plainwell Dam | | x | | | K40366F | 208354 | carp | filiet | Plainwell Dam | х | x | | | K40366R | 208355 | carp | carcass | Plainwell Dam | | x | | | K40367F | 208356 | carp | fillet | Plainwell Dam | X | x | | | K40367R | 208357 | carp | carcass | Plainwell Dam | | x | | | K40368F | 208358 | carp | fillet | Plainwell Dam | X | × | | | K40368R | 208359 | carp | carcass | Plainwell Dam | | х | | | K40391F | 208360 | carp | fillet | Mosel Ave. | X | x | | | K40391R | 208361 | carp | carcass | Mosel Ave. | | х | | | K40424F | 208364 | carp | fillet | Ceresco | X | x | | | K40424R | 208365 | carp | carcass | Ceresco | | х | | | K40425F | 208366 | carp | fillet | Ceresco | X | х | | | K40425R | 208367 | carp | carcass | Ceresco | | х | | | K40426F* | 208368 | carp | fillet | Ceresco | x | x | | | K40426R | 208369 | carp | carcass | Ceresco | | x | | | K40429F | 214892 | сагр | fillet | Ceresco Reservoir | x | х | | | K40429R | 214892 | carp | carcass | Ceresco Reservoir | | х | | | K40431F | 214893 | carp | fillet | Ceresco Reservoir | x | x | | | K40431R | 214894 | carp | carcass | Ceresco Reservoir | | х | | ^{*} MS/MSD/DUP performed on sample ### PCB ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: #### <u>Calibration</u> The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for non-linearity at the low end of the calibration curve. #### Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. #### **Data Assessment** #### 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No Aroclors were detected in the method or instrument blanks. #### 3. System Performance The system performance was acceptable for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. #### 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. #### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for one surrogate in samples K40360F, K40366F, K40368F, K40391F and K40426MSD. No qualifiers were added to these samples based on the deviations. All other surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. #### 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries and the
relative percent difference (RPD) between recoveries were within acceptable control limits. All matrix spike blank recoveries were also within acceptable control limits. #### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ### **DATA REVIEW CHECKLIST** ## PCB Data Review Checklist | | TES | NO | NA | |--|----------|-------------|----| | Data Completeness and Deliverables | | · | | | Is there a narrative or cover letter present? | <u>X</u> | | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | x | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | x | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | × | | | | If yes, were the samples reanalyzed? | | X | | | Matrix Spikes | | | • | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | × | | | | How many spike recoveries were outside of QC limits? | | | | | 0 out of4 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | 0out of2 | | | | | Blanks | | | | | is a Method Blank Summary Form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | | | | | | # PCB Data Review Checklist - Page 2 | | YES | NO | NA | |---|-------------|-------------|-------------| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any field/rinse blanks have positive results? | | | × | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Aroclor 1016/1260 | X | | | | Aroclor 1221 | X | | | | Aroclor 1232 | X | | | | Aroclor 1242 | X | | | | Aroclor 1248 | | | | | Aroclor 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | X | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed?* | × | | | | Are %D values for all compounds within limits (less than 15%)? | × | | | | Analytical Sequence Check | | | | | Is a analytical sequence form present and complete for each column and each period of analyses? | X | | | | Was the proper analytical sequence followed? | X | | | ### PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|-------------|---------|----------| | Cleanup Efficiency Verification | | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | x | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | X | | | | PCB Identification | | | | | Is both a combined and single column Aroclor Identification Report present for every sample? | x | | | | Do the combined column and individual column Aroclor identifications agree? | X | | <u> </u> | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | X | | Compound Quantitation and Reported Detection Li | mits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | . — - | | | | Were the baselines stable? | X | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | <u></u> | | | Where field duplicates submitted with the samples? | | X | | # PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding | Surrogates | - Column 1 | Surrogates - Column | | | |------------|------------|------------|------------|---------------------|-----|--| | | Time | TCX | DCB | TCX | BCB | | | K40360F | OK for all | ↓ (52) | ОК | ↓ (57) | ок | | | K40365F | samples | | | | | | | K40366F | | ↓ (55) | | | | | | K40267F | | | | | | | | K40368F | | Į (56) | | | | | | K40391F | | ↓ (56) | | ↓ (57) | | | | K40424F | | | | | | | | K40425F | | | | | | | | K40426F | | | | | | | | K40426FMS | | | | | | | | K40426FMSD | | ↓ (53) | | | | | | K40429F | | | | | | | | K40431F | | | | | | | Surrogate Standards TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl #### Qualifiers: D Surrogates diluted out Recovery high Recovery low Unless otherwise noted, all parameters are within specified limits. # PCB Calibration Summary Instrument: HP2087 Column: RTX-35 / RTX-5 | Date: | 5/1/94 2255 | 5/8 | 5/3 | 5/4 | 5/4 | 5/4 | 5/4 | |----------------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | to
5/2/94 1916 | 1948 | 2024 | 0355 | 0411 | 1122 | 115B | | 1 | Initial Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Gont.
Cal. | Cont.
Cal. | | | %RSD | %D | % D | % D | % D | % D | % D | | Aroclor 1016 | 5.7 / 4.0 | | | | 6.5 | | | | Arocior 1221 | 6.4 / 3.4 | | | | | ;
 | | | Aroclor 1232 | 4.1 / 2.5 | | <u> </u> | | | · | | | Aroclor 1242 | 4.6 / 4.2 | | | | | | 11.0 | | Aroclor 1248 | 5.1 / 4.5 | 3.5 | <u> </u> | 9.5 | | 8.5 | | | Aroclor 1254 | 4.9 / 4.8 | | | | | | | | Aroclor 1260 | 3.6 / 3.0 | | 4.0 | | | | | | Tetrachloro-m-xylene | 6.6 / 4.5 | | | | | | | | Decachlorobiphenyl | 6.5 / 8.5 | - <u>-</u> | | | | | | | Affected Samples: | | | | | | | | | | | | | | | | | | | · | | | | | | | | · | | | L | | | ·
 | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | • | | | | | | | | | | | | | | Í | } | <u></u> | | [| | | | | ## PCB Calibration Summary - Page 2 Instrument: <u>HP2087</u> Column: <u>RTX-35 / RTX-5</u> | Date: | | 5/4 | 5/4 | 5/5 | 5/5 | 5/6 | 5/6 | |----------------------|--------------|-------------|--|------------|------------|-------------|-------------| | Time: | | 1833 | 1908 | 1752 | 1828 | 0243 | 0319 | | | Initial Cal. | Cont. | Gont. | Cont. | Cont. | Cont. | Cont. | | , | woon | Cat. | Cal. | Gal. | Cal.
%D | Cal.
%D | Cal. | | Arocior 1016 | % ASD | 760 | %D | % 0 | 760 | 7-0 | % D | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | | | | <u></u> | | | Aroclor 1242 | <u> </u> | <u> </u> | | | 15.0 | | | | Aracior 1248 | | 5.5 | | 14.5 | | 13.5 | | | Arocior 1254 | | | 9.5 | | | | 11.5 | | Aroclor 1260 | | | | | | | | | Tetrachloro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | T-T-1 | | 1 | | | | | | | | | | | | | | | | | | _ | | | | | | | | | <u> </u> | | | | | | | ·
 | | <u> </u> | | | <u> </u> | | | | | | - | | | | | | | | | 1 | | | | l
 | | | | | - | | | | | | | | | - | | | <u> </u> | | | | | CORRECTED ANALYSIS SUMMARY FORMS # FORM 1 AROCLOR ANALYSIS DATA SHEET EPA SAMPLE NO. K40360F Lab Name: Aquatec, Inc. Lab Code: **IAUDA** Contract: 91082 Case: BIO SDG: 40202 Phase Type: **BIOTA** Lab Sample ID: 208350 10.0 Phase Weight: (g) **Date Received:** 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 10.0 05/04/94 Dilution Factor: Date Analyzed: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ٥ | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.50 | U | | 11104-28-2 | Aroclor-1221 | 0.50 | U | | 11141-16-5 | Aroclor-1232 | 0.50 | U | | 53469-21-9 | Aroclor-1242 | 0.50 | U | | 12672-29-6 | Aroclor-1248 | 3.6 | | | 11097-69-1 | Aroclor-1254 | 3.1 | | | 11096-82-5 | Aroclor-1260 | 0.50 | U | Sulfur Clean-up: N (Y/N) # FORM 1 AROCLOR ANALYSIS DATA SHEET **EPA SAMPLE NO.** K40365F Aquatec, inc. Lab Code: AQUAI Lab Name: 91082 BIO SDG: 40202 Contract: Case: **BIOTA** 208352 Phase Type: Lab Sample ID: Phase Weight: 10.0 (g) **Date Received:** 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 Dilution Factor: 5.0 Date Analyzed: 05/04/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | ι | | 11104-28-2 | Aroclor-1221 | 0.25 | l | | 11141-16-5 | Aroclor-1232 | 0.25 | l | | 53469-21-9 | Aroclor-1242 | 0.25 | ι | | 12672-29-6 | Aroclor-1248 | 2.8 | | | 11097-69-1 | Aroclor-1254 | 2.1 | | | 11096-82-5 |
Aroclor-1260 | 0.25 | ι | EPA SAMPLE NO. K40366F Lab Name: Aquatec, Inc. Lab Code: **IAUDA** 91082 40202 Contract: Case: BIO SDG: **BIOTA** Phase Type: Lab Sample ID: 208354 10.0 Phase Weight: (g) Date Received: 10/16/93 Injection Volume: 1.0 (uL) **Date Extracted:** 03/30/94 10.0 Dilution Factor: Date Analyzed: 05/04/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.50 | U | | 11104-28-2 | Arocior-1221 | 0.50 | U | | 11141-16-5 | Aroclor-1232 | 0.50 | U | | 53469-21-9 | Aroclor-1242 | 0.50 | U | | 12672-29-6 | Aroclor-1248 | 1.5 | | | 11097-69-1 | Aroclor-1254 | 2.8 | | | 11096-82-5 | Aroclor-1260 | 1.4 | | **EPA SAMPLE NO.** K40367F Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 40202 91082 BIO SDG: Contract: Case: Lab Sample ID: **BIOTA** Phase Type: 208356 10.0 Phase Weight: (g) **Date Received:** 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 2.0 Dilution Factor: Date Analyzed: 05/04/94 Sulfur Clean-up: (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | Ų | | 12672-29-6 | Aroclor-1248 | 1.2 | | | 11097-69-1 | Arocior-1254 | 0.91 | | | 11096-82-5 | Aroclor-1260 | 0.15 | | **EPA SAMPLE NO.** K40368F Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 40202 Case: , Contract: BIO SDG: Phase Type: **BIOTA** Lab Sample ID: 208358 Phase Weight: 10.0 (g) Date Received: 10/16/93 1.0 Injection Volume: (uL) **Date Extracted:** 03/30/94 Dilution Factor: 10.0 05/05/94 Date Analyzed: Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u>a</u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.50 | υ | | 11104-28-2 | Arocior-1221 | 0.50 | U | | 11141-16-5 | Aroclor-1232 | 0.50 | U | | 53469-21-9 | Aroclor-1242 | 0.50 | U | | 12672-29-6 | Aroclor-1248 | 4.2 | | | 11097-69-1 | Aroclor-1254 | 2.5 | | | 11096-82-5 | Aroclor-1260 | 0.50 | U | EPA SAMPLE NO. K40391F AQUAI Lab Name: Aquatec, Inc. Lab Code: Contract: 91082 Case: BIO SDG: 40202 Phase Type: **BIOTA** Lab Sample ID: 208360 Phase Weight: 10.0 **Date Received:** 10/16/93 (g) Injection Volume: 03/30/94 1.0 (uL) **Date Extracted:** Dilution Factor: 5.0 05/04/94 Date Analyzed: Sulfur Clean-up: Y (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Arocior-1016 | 0.51 | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 1.9 | | | 11096-82-5 | Aroclor-1260 | 0.18 | J | Lab Code: Case: Lab Name: Aquatec, Inc. 91082 Contract: K40424F SDG: 40202 EPA SAMPLE NO. Phase Type: **BIOTA** Lab Sample ID: 208364 Phase Weight: 10.0 **Date Received:** 11/10/93 (g) Injection Volume: (uL) 1.0 Date Extracted: 03/31/94 05/04/94 Dilution Factor: 1.0 Date Analyzed: Sulfur Clean-up: (Y/N) N AQUAI BIO | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ٥ | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | บ | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.093 | | | 11096-82-5 | Arocior-1260 | 0.076 | | EPA SAMPLE NO. 'K40425F IAUDA Lab Name: Aquatec, Inc. Lab Code: 40202 91082 Case: Contract: BIO SDG: _ Phase Type: **BIOTA** Lab Sample ID: 208366 Phase Weight: 10.0 (g) Date Received: 11/10/93 Injection Volume: 1.0 03/31/94 (uL) **Date Extracted:** 1.0 05/04/94 Dilution Factor: Date Analyzed: Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | (| | 11104-28-2 | Aroclor-1221 | 0.050 | Į | | 11141-16-5 | Aroclor-1232 | 0.050 | Ţ | | 53469-21-9 | Aroclor-1242 | 0.050 | | | 12672-29-6 | Arocior-1248 | 0.050 | | | 11097-69-1 | Aroclor-1254 | 0.047 | | | 11096-82-5 | Arocior-1260 | 0.036 | | Lab Code: Case: _ EPA SAMPLE NO. K40426F AQUAI BIO SDG: 40202 Lab Sample ID: 208368 Date Received: 11/10/93 | Phase Type: | BIOTA | | |-------------------|-------|------| | Phase Weight: | 10.0 | (g) | | Injection Volume: | 1.0 | (uL) | | Dilution Factor: | 1.0 | | Lab Name: Aquatec, Inc. 91082 Contract: Date Extracted: 03/31/94 Date Analyzed: 05/04/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u>a</u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Arocior-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.030 | J | | 11096-82-5 | Aroclor-1260 | 0.025 | J | EPA SAMPLE NO. K40429F Lab Name: Aquatec, Inc. Lab Code: **IAUDA** Contract: 91082 Case: BIO SDG: 40202 Phase Type: **BIOTA** Lab Sample ID: 214891 Phase Weight: 10.0 (0) **Date Received:** 11/10/93 1.0 Injection Volume: (uL) **Date Extracted:** 03/30/94 1.0 Dilution Factor: Date Analyzed: 05/03/94 Sulfur Clean-up: (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.062 | • | | 11096-82-5 | Aroclor-1260 | 0.039 | J | EPA SAMPLE NO. K40431F **AQUAI** Lab Code: Lab Name: Aquatec, Inc. 40202 Contract: 91082 Case: BIO SDG: **BIOTA** Lab Sample ID: Phase Type: 214893 10.0 Phase Weight: **(g)** Date Received: 11/10/93 Injection Volume: 1.0 (uL) Date Extracted: 03/30/94 Dilution Factor: _ 1.0 Date Analyzed: 05/03/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | u | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Arocior-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | L | | 12672-29-6 | Arocior-1248 | 0.050 | U | | 11097-69-1 | Aroclor-1254 | 0.030 | J | | 11096-82-5 | Aroclor-1260 | 0.027 | J | ### PESTICIDE ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### **Data Assessment** #### 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. All samples were originally analyzed within the specified holding times. The dilutions of samples K40365F and K40368F were, however, analyzed over the specified holding time. All data for the dilutions have been qualified as estimated based on the deviation. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. #### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable
quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. #### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit. #### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. All surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40360F | 2-Bromobiphenyl Aldrin gamma-Chlordane 4,4'-DDE cis-Nonachlor 4,4'-DDT | 151.9%
30.7%
88.5%
32.0%
32.4%
652.8% | |-----------|---|--| | K40365F | Aldrin
gamma-Chlordane
4,4'-DDE
cis-Nonachlor
4,4'-DDT | 30.5%
71.0%
40.2%
44.4%
620.0% | | K40365FDL | 2-Bromobiphenyl Aldrin Heptachlor Epoxide gamma-Chlordane 4,4'-DDE cis-Nonachlor 4,4'-DDT | 151.9%
31.1%
30.0
75.0%
41.8%
26.1%
728.6% | | K40366F | 2-Bromobiphenyl
3-Bromobiphenyl
Aldrin
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 142.4%
144.0%
*32.5%
100.0%
29.9%
363.1% | | K40367F | Aldrin
gamma-Chlordane
4,4'-DDE | 35.0%
71.4%
41.9% | | K40368F | 3-Bromobiphenyl Heptachlor Epoxide gamma-Chlordane 4,4'-DDE 4,4'-DDT | 62.2%
25.5%
112.5%
58.8%
572.7% | |-----------|---|---| | K40368FDL | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 29.0%
37.3%
95.2%
60.2%
680.0% | | K40391F | Aldrin
gamma-Chlordane
4,4'-DDE
cis-Nonachlor
4,4'-DDT | 37.8%
82.4%
32.9%
61.5%
600.0% | | K40424F | 2-Bromobiphenyl | 32.6% | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. #### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries were above the acceptable control limits. All recoveries in the matrix spike blank were, however, within acceptable control limits. The elevated matrix spike recoveries are believed to be attributable to both positive interference from the sample matrix and partial evaporation of the spike extracts after concentration. No qualifiers were added to the samples based on matrix spike performance. #### 8. General Comments The recommended data usage for the sample dilutions is as follows: #### K40365F and K40365FDL The data from sample K40365F should be used for all compounds except Aldrin. The data from the dilution K40365FDL should be used for Aldrin only. #### K40368F and K40368FDL The data from sample K40368F should be used for all compounds except Aldrin. The data from the dilution K40368FDL should be used for Aldrin only. 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. **Data Validation Checksheets** ### Pesticide Data Validation Checklist | | YES | NO | NA_ | |--|-----------|----------|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the samples numbers included in the narrative? | <u> x</u> | | | | Are the sample chain-of-custodies present? | <u> </u> | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Holding Times | | | | | Have any holding times been exceeded? | <u> </u> | <u> </u> | | | Surrogate Recovery | | | | | Are the surrogate recovery forms present? | X | · | | | Are all the samples listed on the appropriate surrogate recovery form? | X | | | | Are the outliers correctly marked with an asterisk? | | | X | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | | X | | | If yes, were the samples reanalyzed? | | | X | | Were the method blanks reanalyzed? | | | X | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | <u></u> | | 8 out of8 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | | | | | Blanks | | | | | Is the method blank summary form present? | <u> </u> | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | | | | | | ### Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA | |--|-------------|---------------|----| | Is the chromatographic performance acceptable for each instrument? | X | | | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any trip/field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts pre blanks, and MS/MSD? | sent for a | all samples | , | | peak resolution check | X | | | | performance evaluation mixtures (BCS) | X | | | | Toxaphene multipoint calibration | X | | | | Pesticide/PBB multipoint calibration | X | | | | Pesticide/PBB mid-point standard | X | | | | instrument blanks | X | _ | | | Are Forms VI 1-4 present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | X | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | X | | | | Is Form VII-1 present for each BCS analyzed for both columns? | X | | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | X | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | X | | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | X | | | | Are RPD values for all compounds < 25%? | X | | | | Analytical Sequence Check | | · · | | | Is Form VIII present and complete for each column and each period of analyses? | X | | | ### Pesticide/PCB Data Validation Checklist - Page 3 | | YES | NO | NA | |---|-------------|----------|----| | Was the proper analytical sequence followed? | X | | | | Cleanup Efficiency Verification | | - | | | Is Form IX-1 present for each lot of Florisil cartridges used? | <u>x</u> | | | | Are all samples listed on the form? | X | | | | If GPC cleanup was performed, is Form IX-2 present? | | | X | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits for: | | | | | Florisil cartridge check (80-120%) | X | | | | GPC calibration (80-110%) | | | X | | Pesticide/PBB Identification | | | | | Is a Form X present for every sample in which a pesticide or PCB was detected? | X | | | | Was GC/MS confirmation provided when required? | | | X | | Is the percent difference (%D) calculated for the positive sample results on the two columns less than 25%? | | X | | | Were there any false negatives? | | X | | | Compound Quantitation and Reported Detection Limit | ls | <u> </u> | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | X | | | | Chromatogram Quality | | | | | Were the baselines stable? | <u> </u> | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | X | | # Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample ID | Holding | Surregates | - Column 1 | Surrogates | - Column 2 | |------------|---------|------------|------------|------------|------------| | | Time | TCX | DCB | TCX | DCB | | K40360F | | ок | ок | ок | ок | | K40365F | | | | | | | K40365FDL | +1 | | | | | | K40366F | | | | | | | K40367F | | | | | | | K40368F | | | | | | | K40368FDL | +1 | | | | | | K40391F | | | | | | | K40424F | | | | | | | K40425F | | | | | | | K40426F | | | | | | | K40426FMS | | | | | | | K40426FMSD | | | | | | | K40429F | | | | | | | K40431F | | | | | | Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: D Surrogate diluted out Recovery high ↓ Recovery low Unless
otherwise noted, all samples are within specified limits. ### Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 4/26/94 | 5/2 | 5/2 | 5/2 | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|-------| | Time: | 20:30 | 01:43 | 14:08 | 22:28 | | | | | ı | Initial
Cal. | Cont.
Cai. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont. | | | %RSD | % D | %D | % D | %D | %D | %D | | 2-Bromobiphenyl | ok | ok | ok | ok | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | · | | <u> </u> | | <u> </u> | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | <u>.</u> | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | <u> </u> | | | Tetrachloro-m-xylene | | | | | ø. | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | Γ | | | | | | | | ### Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 4/26/94 | 5/2 | 5/2 | 5/2 | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | 20:30 | 01:43 | 14:08 | 22:28 | | | | | N | initial
Cal. | Cont.
Cal. | Gont.
Cal. | Cont.
Gal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | %RSD | %D | %D | % D | % D | % D | % D | | 2-Bromobiphenyl | ok | ok | ok | ok | | | | | 3-Bromobiphenyl | <u></u> | | | | | l
 | | | 4-Bromobiphenyl | | | | | | | | | Hexachlorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chiordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | <u> </u> | | Toxaphene | | | | | | | <u> </u> | | Tetrachloro-m-xylene | | | | | - | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | | | | | | | | | { | | | | | | | | | Ī | | | | | | | | | Ī | | | | | | | | | | | | · | | | | | ### Pesticide/PBB Calibration Summary - Page 3 Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/8/94 | 5/9 | 5/10 | | | | | |-----------------------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | 17:57 | 18:35 | 02:55 | | | | | | v | initial
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Gont.
Cal. | Cont.
Cal. | Cont.
Cel. | | | %RSO | % D | % D | % D | %D | % D | % D | | 2-Bromobiphenyl | ok | ok | ok | | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachiorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | | Aldrin | | | | | | | | | Heptacior epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachior | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachioro-m-xylene | | | | | a i. | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | Γ | | | | | | | | ### Pesticide/PBB Calibration Summary - Page 4 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/6/94 | 5/9 | 5/10 | | | | | |-----------------------------|----------------|---------------|---------------|---------------|---------------------------------------|---------------|---------------| | Time: | 17:57 | 18:35 | 02:55 | | | | | | | Initial
Cal | Cont.
Cal. | Gont,
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | *ASD | % D | %D | % D | % 0 | % D | %D | | 2-Bromobiphenyl | ok | ok | ok | | | | | | 3-Bromobiphenyl | | | | | | | | | 4-Bromobiphenyl | | | | | | | | | Hexachiorobenzene | | | | | | | | | gamma-BHC
(Lindane) | | | | | · · · · · · · · · · · · · · · · · · · | | | | Aldrin | | | | | | | | | Heptaclor epoxide | | | | | | | | | gamma-Chlordane | | | | | | | | | alpha-Chlordane | | | | | | | | | trans-Nonachlor | | | | | | | | | 4,4'-DDE | | | | | | | | | Dieldrin | | | | | | | | | 4,4'-DDD | | | | | | <u> </u> | | | cis-Nonachlor | | | | | | | | | 4,4'-DDT | | | | · | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | | Toxaphene | | | | | | | | | Tetrachioro-m-xylene | | | | | | | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: | [
 | | | | | | | | | | | | | Ţ | | | | | | | | Corrected Sample Analysis Data Sheets Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO 2.0 Client ID No. K40360F 40202 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: Lab Sample ID: 208350 Date Received: 10/16/93 Date Extracted: 03/30/94 SDG: Date Analyzed: _____ Sulfur Clean-up: 03/30/94 05/09/94 N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------------|-----------------------|------| | 2052 07 5 | 2-Bromobiphonyl | 0.054 | | | 2113-57-7 | 3-Bromobiphenyl | 0.020 | U | | 92-66-0 | 4-Bromobiphenyl | 0.020 | U | | 118-74-1 | Hexachlorobenzene | 0.010 | U | | 58-89-9 | gamma-BHC | 0.010 | U | | 309-00-2 | Aldrin | 0.16 | + EJ | | 1024-57-3 | Heptachlor Epoxide | 0.11 | | | 5103-74-2 | gamma-Chlordane | 0.061 | JN | | 5103-71-9 | alpha-Chlordane | 0.049 | | | 39765-80-5 | trans-Nonachlor | 0.010 | U | | 72-55-9 | 4,4'-DDE | 0.18 | 7 | | 60-57-1 | Dieldrin | 0.020 | U | | 72-54-8 | 4,4'-DDD | 0.072 | | | 5103-73-1 | cis-Nonachlor | 0.037 | 7 | | 50-29-3 | 4,4'-DDT | 0.036 | | | 36355-01-8 | Hexabromobiphenyl | 0.040 | U | | 8001-35-2 | Toxaphene | 0.40 | U | . Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40365F 40202 -R Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208352 Date Received: 10/16/93 Date Extracted: 03/30/94 Date Analyzed: 05/02/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|-----------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.10 -0.082- | - T.C. —X | | 1024-57-3 | Heptachlor Epoxide | 0.043 | | | 5103-74-2 | gamma-Chiordane | 0.031 | JN | | 5103-71-9 | alpha-Chlordane | 0.022 | | | 39765-80-5 | trans-Nonachlor | 0.0050 | υ | | 72-55-9 | 4,4'-DDE | 0.087 | 4 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.035 | | | 5103-73-1 | cis-Nonachlor | 0.018 | 7 | | 50 29 3 | 4,4' DDT | 0.020 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40366F 40202 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208354 Date Received: 10/16/93 Date Extracted: 03/30/94 Date Analyzed: 05/02/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--|---
--|--| | 2052 07 5 | 2 Bromobiphenyl | 0.059 | | 1 _R | | 2113 57 7 | 3-Bromobiphenyl | 0.025 | | IR. | | 92-66-0 | | | U | 1 | | 118-74-1 | | | U | 1 | | 58-89-9 | | 0.0050 | Ū | 1 | | 309-00-2 | Aldrin | 0.077 | 7 | 1 | | 1024-57-3 | Heptachlor Epoxide | 0.047 | | 1 | | 5103 74 2 | gamma-Chlordane | 0.025 | | 1R | | 5103-71-9 | alpha-Chlordane | 0.013 | | 7'` | | 39765-80-5 | trans-Nonachior | 0.0050 | U | 7 | | 72-55-9 | 4,4'-DDE | 0.13 | ज | 7 | | 60-57-1 | Dieldrin | 0.010 | U | 7 | | 72-54-8 | 4,4'-DDD | 0.025 | | 7 | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | 7 | | 50-29-3 | 4,4'-DDT | 0.036 | | 3R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U |]'` | | 8001-35-2 | Toxaphene | 0.20 | U | 7 | | | 2052 07 5
2113 57 7
92-66-0
118-74-1
58-89-9
309-00-2
1024-57-3
5103-74-2
5103-71-9
39765-80-5
72-55-9
60-57-1
72-54-8
5103-73-1
50-29-3
36355-01-8 | 2052 07 5 2 Bromobiphenyl 2113-57 7 3 Bromobiphenyl 92-66-0 4-Bromobiphenyl 118-74-1 Hexachlorobenzene 58-89-9 gamma-BHC 309-00-2 Aldrin 1024-57-3 Heptachlor Epoxide 5103-74-2 gamma-Chlordane 5103-71-9 alpha-Chlordane 39765-80-5 trans-Nonachlor 72-55-9 4,4'-DDE 60-57-1 Dieldrin 72-54-8 4,4'-DDD 5103-73-1 cis-Nonachlor 50-29-3 4,4'-DDT 36355-01-8 Hexabromobiphenyl | Comp/Kg | Comp/Kg Composition Com | Client ID No. K40367F Lab Name: Aquatec, inc. Lab Code: AQUAI Contract: 91082 40202 Case: BIO SDG: Lab Sample ID: 208356 Phase Type: **Biota** Date Received: 10/16/93 Phase Weight: 10.0 **Date Extracted:** 03/30/94 Extraction: Soxhlet 05/02/94 Date Analyzed: Dilution Factor: 1.0 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | a | |------------|--------------------|--------------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | V | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.040 | 7 | | 1024-57-3 | Heptachlor Epoxide | 0.023 | | | 5103-74-2 | gamma-Chlordane | 0.014 | JN | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | Ü | | 72-55-9 | 4,4'-DDE | 0.043 | J | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.Q13 | | | 5103-73-1 | cis-Nonachlor | 0.013 | | | 50-29-3 | 4,4'-DDT | 0.010 | Ü | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. K40368F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40202 Lab Sample ID: 208358 Thase Type: Biota Date Received: 10/16/93 Client ID No. | Extraction: | Soxhlet | Date Analyzed: | 05/02/94 | |------------------|---------|------------------|----------| | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |--------------------|---|--|--| | 2-Bromobiphenyl | 0.010 | U | | | 3-Bromobiphenyl | 0.0074 | JN | | | 4-Bromobiphenyl | 0.010 | U | | | Hexachlorobenzene | 0.0050 | U | | | gamma-BHC | 0.0050 | U | | | Aldrin | 0.14 0.11 | * DJ | | | Heptachlor Epoxide | 0.055 | 5 | | | gamma-Chlordana | 0.032 | | -R | | alpha-Chlordane | 0.015 | | | | trans-Nonachior | 0.0050 | U | | | 4,4'-DDE | 0.068 | 75 | | | Dieldrin | 0.010 | U | | | 4,4'-DDD | 0.026 | | | | cis-Nonachlor | 0.025 | | | | 4,4' DDT | 0.022 | | -R | | Hexabromobiphenyl | 0.020 | U | | | Toxaphene | 0.20 | U | | | |
2-Bromobiphenyl 3-Bromobiphenyl 4-Bromobiphenyl Hexachlorobenzene gamma-BHC Aldrin Heptachlor Epoxide gamma-Chlordane alpha-Chlordane trans-Nonachlor 4,4'-DDE Dieldrin 4,4'-DDD cis-Nonachlor 4,4'-DDT Hexabromobiphenyl | 2-Bromobiphenyl 0.010 3-Bromobiphenyl 0.0074 4-Bromobiphenyl 0.010 Hexachlorobenzene 0.0050 gamma-BHC 0.0050 Aldrin 0.14 0.11 Heptachlor Epoxide 0.055 gemma-Chlordane 0.015 trans-Nonachlor 0.0050 4,4'-DDE 0.068 Dieldrin 0.010 4,4'-DDD 0.026 cis-Nonachlor 0.025 | Comp/Kg | Lab Name: Aquatec, Inc. K40391F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40202 Lab Sample ID: 208360 thase Type: Biota Date Received: 10/16/93 Client ID No. | | | Lab Sample ID: | 208360 | |------------------|---------|------------------|----------| | Phase Type: | Biota | Date Received: | 10/16/93 | | Phase Weight: | 10.0 g | Date Extracted: | 03/30/94 | | Extraction: | Soxhlet | Date Analyzed: | 05/02/94 | | Dilution Factor: | 1.0 | Sulfur Clean-up: | N | | | | | | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | α | |--------------------|--------------------|-----------------------|--------------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.040 | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.037 | J | | 1024-57-3 | Heptachlor Epoxide | 0.020 | JN | | 5103-74-2 | gamma-Chiordane | 0.017 | | | 5103-71-9 | alpha-Chlordane | 0.015 | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.076 | 5 | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.025 | | | 5103-73-1 | cis-Nonachlor | 0.013 | JN | | 50 29 3 | 4,4' DDT | 0.016 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Soxhlet 1.0 Extraction: Dilution Factor: Client ID No. Aquatec, Inc. Lab Name: K40424F Lab Code: AQUAI Contract: 91082 BIO Case: SDG: 40202 Lab Sample ID: 208364 Phase Type: **Biota** Date Received: 11/10/93 Phase Weight: 10.0 Date Extracted: 03/31/94 Date Analyzed: Sulfur Clean-up: 05/02/94 N | CAS NO. | COMPOUND | CONCENTRATION
(mg/Kg) | a | |------------|--------------------|--------------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.043 | 7 | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.052 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | Ü | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40425F 40202 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 208366 Date Received: 11/10/93 Date Extracted: 03/31/94 Date Analyzed: 05/02/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | υ | | 309-00-2 | Aldrin | 0.0050 | Ü | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.014 | | | 60-57-1 | Dieldrin | 0.010 | U. | | 72-54-8 | 4,4'-DDD | 0.01.0 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. K40426F Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40202 Lab Sample ID: 208368 Client ID No. Phase Type: **Biota Date Received:** 11/10/93 Phase Weight: 10.0 **Date Extracted:** 03/31/94 **Extraction:** Soxhlet Date Analyzed: 05/02/94 Dilution Factor: 1.0 Sulfur Clean-up: N | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ā | |------------|--------------------|-----------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | υ | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.012 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40429F 40202 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 214891 Date Received: 11/10/93 Date Extracted: 03/30/94 Date Analyzed: 05/02/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | |------------|--------------------|-----------------------|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ü | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | Ü | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | Ü | | 5103-71-9 | alpha-Chlordane | 0.0050 | U | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.019 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | Ü | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40431F 40202 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 214893 Date Received: 11/10/93 Date Extracted: 03/30/94 Date Analyzed: 05/02/94 Sulfur Clean-up: N SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------------|-----------------------|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ü | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.0050 | U | | 1024-57-3 | Heptachlor Epoxide | 0.0050 | U | | 5103-74-2 | gamma-Chlordane | 0.0050 | U | | 5103-71-9 | alpha-Chlordane | 0.0050 | U . | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.012 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.010 | U | | 5103-73-1 | cis-Nonachlor | 0.0050 | U | | 50-29-3 | 4,4'-DDT | 0.010 | U | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | # MERCURY ANALYSES ## Introduction Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: ## Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). ## Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - * Duplicate analysis not within control limits. - + Correlation coefficient for MSA is less than 0.995. ## Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. ## **Data Assessment** ## 1. Holding Time The recommended holding times for mercury analyses is 28 days from
tissue homogenization. All samples were analyzed within this holding time. ## 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. ## 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. ## 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. ### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. ## 3.3 CRDL Standard One of the two CRDL standard recoveries was above acceptable limits. No associated data fell in the affected range; therefore, no qualifiers were added to the samples. ## 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. ## 4.1 Matrix spike Recovery for the matrix spike was below acceptable limits. All data have been qualified as estimated based on the deviation. ## 4.2 Laboratory Duplicate The laboratory duplicate relative percent difference (RPD) was within acceptable limits. ## 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. ### 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. ### 7. Furnace QC No furnace analyses were performed. ## 8. Method of Standard Additions (MSA) No MSA were performed. ## 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. **Data Validation Checksheets** | | YES | NO | NA | |--|-------------|-------------|---------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the sample numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | X | | | | Sample No.? | X | | - | | SDG No.? | X | | | | Correct units? | X | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | Is the distillation log for mercury present? | X | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP | | | X | | Flame AA | | | X | | Furnace AA | | | X | | Mercury | X | | | | Cyanides | | | X | | Is the data legible? | X | | | | is the data properly labeled? | X | | | | Holding Times | | | | | Were mercury analyses performed within 28 days? | <u> </u> | | ·
 | | | YES | NO | NA | |---|----------|-------------|-------------| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | · | | Are all forms complete? | X | | | | Are correct units indicated on Form 1's? | X | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | X | | | | Was a brief physical description of samples given on Form I's? | | X | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | · | | X | | ls a record of 5 point calibration present for Hg
analysis? | X | | | | Is a record of 4 point calibration present for: | | | | | Flame AA? | | | X | | Furnace AA? | | | X | | Cyanides? | | | X | | Is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | X | | ls correlation coefficient less than .995 for: | | | | | Mercury Analysis? | X | | | | Cyanide Analysis? | | | X | | Atomic Absorption Analysis? | | | X | | Form II A (Initial and Continuing Calibration Verific | ation) | | | | Present and complete for every metal and cyanide? | <u> </u> | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | X | | Hg (80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | X | | | | | | | | YES | NO | NA | |--|-----|----|----| | Was continuing calibration performed every 10 samples or every 2 hours? | X | | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | × | | Was a mid-range calibration verification standard distilled and analyzed for cyanide analysis? | | | Х | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | | X | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | × | | Form III (Initial and Continuing Calibration Blanks) | | | | | Present and complete? | X | | | | Was an initial calibration blank analyzed? | X | | | | Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)? | X | | | | Are all calibration blanks (when IDL <crdl) (crdls)?<="" contract="" detection="" equal="" less="" limits="" or="" required="" td="" than="" the="" to=""><td>×</td><td></td><td></td></crdl)> | × | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | × | | Form III (Preparation Blank) | | | | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | x | | | | each batch of digested samples? | X | | | | each matrix type? | X | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | × | | | | YES | NO | NA | |--|-----------|----------------|----| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | X | | Is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | Х | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | | | | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | х | | Are all Interference Check Sample results inside the control limits (±20%)? | | | × | | If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | X | | Form V A (Spiked Sample Recovery - Pre-Digestion/F | re-Distil | <u>lation)</u> | | | Present and complete for: | | | | | each SDG? | X | | | | each matrix type? | X | | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | | X | | | If no, is sample concentration greater than or equal to four times spike concentration? | | X | | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | X | | | | Are any spike recoveries: | | | | | less than 10%? | | X | | | between 10-74%? | X | | | | between 126-200%? | | X | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | <u></u> | | | Present and complete for: | | | | | each SDG? | X | | | | | | | | | | YES | NO | NA | |--|-----|----|----| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | × | | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | X | | | | If 'no, are all results outside the control limits flagged with an * on Form I's and VI? | • | | X | | Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | Χ. | | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | | X | | Form VII (Laboratory Control Sample) | | | | | Was one LCS prepared and analyzed for: | | | | | each SDG? | X | | | | each batch samples digested/distilled? | X | | | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | Is LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | X | | each matrix type? | | | Х | |
Was field blank(s) used for Serial Dilution Analysis? | | | X | | Are results outside control limit flagged with an "E" on Form I's and Form IX when initial concentration of Form IX is equal to 50 times IDL or greater. | | | × | | Are any % difference values: | | | | | > 10%? | | | X | | ≥100%? | | | X | | Furnace Atomic Absorption (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | x | | | | | | | | YES | NO | NA | |--|------|----|----| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | | | X | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X | | Is analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | | | | Present? | | x | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | X | | Was MSA required for any sample but not performed? | | X | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | | X | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | X | | <u>Field Blank</u> | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | × | | Form X, XI, XII (Verification of Instrumental Parameter | ers) | | | | Is verification report present for : | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation Factors (annually)? | | · | X | | ICP Linear Ranges (quarterly)? | | | X | | Form X (Instrument Detection Limits) | | | | | Are IDLs present for: | | | | | all the analytes? | X | | | | all the instruments used? | X | | | | | YES | NO | NA | |---|-----|-------------|----| | Is IDL greater than CRDL for any analyte? | | X | | | If yes, is the concentration of Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, greater than 5 x IDL. | | | X | | Was any sample result higher linear range of ICP. | | | X | | Was any sample result higher than the highest calibration standard for non-ICP parameters? | | X | | | If yes for any of the above, was the sample diluted to obtain the result on Form I? | | | X | | | | | | Corrected Sample Analysis Data Sheets # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Lab Name: AQUA | TEC | | Contract: 91 | 1082 | | K40360F | |----------------|------------------------|---------------------|---------------------------------------|--------------|-------------|----------------| | Lab Code: AQUA | I Ca | se No.: BI | SAS No.: | : | | SDG No.: 40202 | | | _ | | | | | | | Matrix (soil/w | acer; rism | - | | Lab | Sampi | e ID: 208350 | | Level (low/med |): LOW_ | | | Dat | e Rece | ived: 10/16/93 | | % Solids: | 100. | 0 | | | | | | Co. | ncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | 1 | Τ | · · · · · · · · · · · · · · · · · · · | П | | - | | | CAS No. | Analyte | Concentration | С | Q | М | | | 7429-90-5 | | | - - | | NR | | | 7440-36-0 | Antimony_ | | | | NR | | | 7440-38-2 | Arsenic | | | | nr | | | 7440-39-3 | Barium | | _ _ | | NR | | | 7440-41-7 | Beryllium | | _ _ | | NR | | | 7440-43-9 | Cadmium_
Calcium | | - - | | NR | | | 7440-70-2
7440-47-3 | | , | - - | | NR | | | 7440-47-3 | Chromium_
Cobalt | | - - | | NR
NR | | | 7440-50-8 | Copper | | - - | | NR NR | | | 7439-89-6 | Iron | | - - | | NR NR | | | 7439-92-1 | Lead | | - - | | NR | | - | 7439-95-4 | Magnesium | | - - | | NR | | | 7439-96-5 | Manganese | | - - | | NR | | | 7439-97-6 | Mercury | 0.10 | - = | | CV | | | 7440-02-0 | Nickel | | - - | | NR | | | 7440-09-7 | Potassium | | - - | | NR | | | 7782-49-2 | Selenium | | - - | | NR | | | 7440-22-4 | Silver - | | - - | | NR | | | 7440-23-5 | Sodium | | - - | | NR | | | 7440-28-0 | | | | | NR | | | 7440-62-2 | Vanadium_ | | | | NR | | | 7440-66-6 | Zinc | | _ _ | | NR | | | | Cyanide | | _ _ | | NR | | | | | | 1_1_ | 1 | | | Color Before: | | Clarit | ty Before: | | | Texture: | | Color After: | | Clarit | ty After: | | | Artifacts: | | Comments: | # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | AQUATEC | | Contract: 91 | 108 | 2 | K40365F | |-------------|-------------------------|---------------------|-----------------|-----------|-------------|-----------------| | ab Code: 1 | AQUAI_ Ca | se No.: BI | O SAS No.: | : | | SDG No.: 40202 | | Matrix (so: | -
il/water): FISH | <u> </u> | | La | b Sampi | le ID: 208352 | | Level (low) | /med): LOW | | | Ďa | te Rec | eived: 10/16/93 | | | _ | | | | | | | Solids: | 100. | O | | | | | | | Concentration | Units (ug | /L or mg/kg dry | y w | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony | | - | | NR | | | 7440-38-2 | Arsenic_ | | | | NR | | | 7440-39-3 | Barium | | | | NR | | | | Beryllium | |]_]. | | NR | | | 7440-43-9
7440-70-2 | Cadmium_
Calcium | | l—I: | | NR
NR | | | 7440-47-3 | Chromium | | - - | | NR NR | | | 7440-48-4 | Cobalt | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | 1-1 | | NR | | | 7439-92-1 | Lead | | | | NR | | | | Magnesium | | | | NR | | | 7439-96-5 | Manganese | | - | | NR | | | 7439-97-6
 7440-02-0 | Mercury_
Nickel | 0.13 | - | <u></u> | CV
NR | | | • | Potassium | | - | | NR NR | | | 7782-49-2 | Selenium | | - | | NR | | | | Silver | | | | NR | | | | Sodium | | - | | NR | | | 7440-28-0 | Thallium_ | | | | NR | | | | Vanadium_ | | | | NR | | | 7440-66-6 | Zinc | | | | NR | | | | Cyanide_ | | _ | | NR | | | l | | l | 1_1 | | 11 | | olor Befor | :e: | Clari | ty Before: | | <u>-</u> | Texture: | | Color After | : | Clari | ty After: | | | Artifacts: | | Comments: | | | | | | | | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Lab Name: AQUA | TEC | | Contract: 91 | L082 _ | K40366F | |----------------|--|--|-----------------|-------------|--| | | | | | | SDG No.: 40202_ | | Matrix (soil/w | ater): FISH | _ | | Lab Sample | e ID: 208354 | | Level (low/med |): LOW_ | _ | | Date Rece | ived: 10/16/93 | | % Solids: | 100. | 0 | | | | | | | | /L or mg/kg dry | weight): | MG/KG | | | CAS No. | Analyte | Concentration | C Q | <u></u> | | | 7440-70-2
7440-47-3
7440-48-4 | Antimony_
Arsenic_
Barium_
Beryllium
Cadmium_
Calcium_
Chromium_
Cobalt | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR | | | 7439-92-1
7439-95-4
7439-96-5
7439-97-6
7440-02-0
7440-09-7
7782-49-2
7440-22-4 | Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver | 0.12 | | NR
NR
NR
CV
NR
NR
NR
NR | | | 7440-23-5
7440-28-0
7440-62-2
7440-66-6 | Sodium Thallium Vanadium Zinc Cyanide | | | NR
NR
NR
NR
NR | | Color Before: | | Clarit | ty Before: | | Texture: | | Color After: | | Clarit | ty After: | | Artifacts: | | Comments: | | | | | | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | ATEC | | Contract: 91 | 1082 | | K40367F | |----------------|--------------|-------------|-----------------|--|--|-----------------| | Lab Code: AQUI | AI_ Ca | se No.: BI | OSAS No.: | · | | SDG No.: 40202_ | | Matrix (soil/v | water): FISH | _ | | Lab | Sampl | e ID: 208356 | | Level (low/med | d): LOW_ | - | | Date | e Rece | ived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y we | ight): | MG/KG | | | | | | | | | | | CAS No. | Analyte | Concentration | C | Q | M | | | 7429-90-5 | Aluminum | | - - | —————————————————————————————————————— | NR | | | 7440-36-0 | Antimony | | \- - | | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium | | - - | | NR | | | 7440-41-7 | Beryllium | | \-\- | | NR | | | 7440-43-9 | Cadmium | | - - | | NR | | | 7440-70-2 | Calcium | | - - | | NR | | | 7440-47-3 | Chromium | | - - | | NR | | | | Cobalt | | - - | | NR | | | 7440-50-8 | Copper | | - - | | NR | | | 7439-89-6 | Iron | | <u> </u> | | NR | | | | Lead | | - - | | NR | | | | Magnesium | | - - | | NR | | | | Manganese | | - - | | NR | | | 7439-97-6 | Mercury | 0.09 | - 5 | | CV | | | | Nickel - | | - - | | NR | | • | | Potassium | | - - | | NR | | | | Selenium | | 1-1- | | NR | | | | Silver | | - - | | NR | | | | Sodium | | - - | | NR | | | | Thallium | | - - | | NR | | | | Vanadium | | - - | | NR | | | 7440-66-6 | Zinc | | - - | | NR | | | | Cyanide_ | | - - | | NR | | | | | | _ _ | I | I | | Color Before: | • | Clarit | ty Before: | | | Texture: | | Color After: | | Clarit | ty After: | | | Artifacts: | | Comments: | | | | | | | | | | | | | | | | | · | | | | | |
INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ab Name: AQUA | ATEC | · | Contract: 91 | L08 | 32 | K40368F | |---------------|------------------------|-----------------------|-----------------|----------|---------------|-----------------| | ab Code: AQUA | AI_ Ca | se No.: BI | SAS No.: | : _ | | SDG No.: 40202 | | atrix (soil/v | water): FISH | _ | | La | ab Samp | le ID: 208358 | | evel (low/med | l): LOW_ | _ | | Da | te Rec | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | 7 W | veight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | | 1 | | _ | | 100 N | | | 7429-90-5
7440-36-0 | Aluminum_
Antimony | | -1 | | NR
NR | | | 7440-38-2 | Arsenic | | - | | NR NR | | | | Barium | | - | | NR | | | 7440-41-7 | Bervllium | | - | | NR | | | 7440-43-9 | Beryllium
Cadmium | | - | | NR | | | | Calcium | | - | | NR | | | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | Cobalt | | | | NR | | | 7440-50-8 | Copper | | <u> </u> | | NR | | | 1 | | | _ | | NR | | - | 7439-92-1 | Lead | | _ | | NR | | | | Magnesium | | _ | | NR | | | | Manganese | | _{ | - | NR | | | 7439-97-6 | Mercury_ | 0.06 | - | <u> </u> | CV | | | | Nickel
Potassium | | - | | NR
NR | | | | Selenium | | - | | NR | | | | Silver | | - | | NR | | | | Sodium | | - | | NR | | | 7440-28-0 | Thallium | | - | | NR | | | | Vanadium | | - | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide_ | | - | | NR | | olor Before: | | Clarit | ty Before: | - | ! | Texture: | | | | | | | - | | | olor After: | | Clarit | ty After: | | _ | Artifacts: | | omments: | | | | | | | | | | | | | | | ILM02.1 EPA SAMPLE NO | | INORGANIC ANALYSES DATA SHEET | | | SHEET | EFA SAMPLE NO. | | |---------------|-------------------------------|--------------|-----------------|----------------|-------------------|--| | ab Name: AQU | ATEC | K40391F | | | | | | ab Code: MIII | A.T C2 | se No · BT | | SDG No.: 40202 | | | | ap code. Agoi | ca | se no bi | SAS NO. | | _ SDG NO.: 40202 | | | atrix (soil/ | water): FISH | - | | Lab San | mple ID: 208360 | | | evel (low/med | i): LOW_ | _ | | Date R | eceived: 10/16/93 | | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y weigh | t): MG/KG | | | | CAS No. | Analyte | Concentration | C Q | м | | | | 7429-90-5 | | | | NR | | | | 7440-36-0 | Antimony_ | | | NR | | | | 7440-38-2
7440-39-3 | Arsenic | | - | NR
NR | | | | 7440-41-7 | | | - | - NR | | | | 7440-43-9 | Cadmium | | | - NR | | | | 7440-70-2 | Calcium | | - | NR | | | | 7440-47-3 | Chromium | | | NR | | | | 7440-48-4 | | | | NR | | | | 7440-50-8 | Copper | | | NR NR | | | | 7439-89-6
7439-92-1 | Iron | | - | NR
NR | | | | 7439-95-4 | Magnesium | | - | - NR | | | | 7439-96-5 | Manganese | | - | - NR | | | | 7439-97-6 | Mercury | 0.06 | - 2N | CV | | | | 7440-02-0 | Nickel | | | NR | | | • | 7440-09-7 | Potassium | | _ | NR | | | | 7782-49-2
 7440-22-4 | Selenium_ | | | NR NR | | | | 7440-23-5 | | | - | NR
NR | | | | 7440-28-0 | Thallium | | - | - NR | | | | 7440-62-2 | Vanadium_ | | - | NR | | | | 7440-66-6 | Zinc | | | NR | | | | | Cyanide | | - | NR | | | | I | 1 | · | 1-1 | 1 | | | olor Before: | | Clari | ty Before: | | Texture: | | | olor After: | | Clari | ty After: | | Artifacts: | | | omments: | | | | | | | | | | | | | | | # 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | INORGANIC A | Analyses data s | SHI | EET | | |----------------|------------------------|----------------------|-----------------|--------------|-------------|-----------------| | Lab Name: AQUA | Contract: 91082 | | | K40424F | | | | Lab Code: AQUA | I_ Ca | se No.: BI | SAS No.: | : _ | | SDG No.: 40202_ | | Matrix (soil/w | ater): FISH | _ | | La | ab Samp | le ID: 208364 | | Level (low/med | _ | - | | Da | ate Rec | eived: 11/10/93 | | % Solids: | 100. | 0 | • | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y v | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | | | -

 - | | NR | | | 7440-36-0 | Antimony_ | | _ | | NR | | | 7440-38-2 | Arsenic | | _ | | NR | | | 7440-39-3 | Barium | | _ | | NR | | | 7440-41-7
7440-43-9 | Beryllium
Cadmium | | - | | NR
NR | | | 7440-70-2 | Calcium | | | | NR | | | 7440-70-2 | Chromium | | - | | NR | | | 7440-48-4 | | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | - | | NR | | | 7439-92-1 | Lead | | - | | NR | | $\overline{}$ | 7439-95-4 | Magnesium | | - | | NR | | | 7439-96-5 | Manganese | | - | | NR | | | 7439-97-6 | Mercury | 0.16 | - | <u>7</u> N | CV | | | 7440-02-0 | Nickel | | - | | NR | | | 7440-09-7 | Potassium | · | _ | | NR | | | 7782-49-2 | Selenium | | - | | NR | | | 7440-22-4 | Silver - | | - | | NR | | | 7440-23-5 | Sodium | | - | | NR | | | 7440-28-0 | Thallium | | - | | NR | | | 7440-62-2 | Vanadium - | | - | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | _ | | NR | | 0.1 | l | | | I | l <u> </u> |
 | | Color Before: | | Clari | ty Before: | | - | Texture: | | Color After: | | Clari | ty After: | | <u>.</u> | Artifacts: | | Comments: | | | | | | | | | | | | | | | FORM I - IN ILM02.1 | | | INORGANIC : | MALYSES DATA SHEET | | | DEA SAMPLE NO. | | |----------------|------------------------|---------------------|--------------------|-----------------|-----------------|----------------|--| | | ATEC | | Contract: 91 | Contract: 91082 | | | | | | | SAS No.: | | | SDG No.: 40202 | | | | | _ | | | | | • | | | Matrix (soil/v | water): FISH | | | Lab Sa | ample | ID: 208366 | | | evel (low/med | i): LOW_ | _ | | Date 1 | Recei | ved: 11/10/93 | | | Solids: | 100. | 0 | | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y weigl | ht): | MG/KG | | | | CAS No. | Analyte | Concentration | C Q | м | | | | | 7429-90-5 | Aluminum | | | — _N | R | | | | 7440-36-0 | Antimony_ | | - | | R | | | | 7440-38-2 | Arsenic | | - | | R | | | | 7440-39-3 | Barium - | | - - | — N | R | | | | 7440-41-7 | Beryllium | | | | R | | | | 7440-43-9 | | | | | R | | | | 7440-70-2 | | | | | R | | | | 7440-47-3 | Chromium_ | | _ | | R | | | | 7440-48-4 | Cobalt | | _ | | R | | | | 7440-50-8 | Copper | | | | R | | | | 7439-89-6 | Iron | | | | R | | | | 7439-92-1 | Lead | | _ | | R | | | | 7439-95-4 | Magnesium | | _ | | R | | | | 7439-96-5 | Manganese | | | | R | | | | 7439-97-6 | Mercury_ | 0.03 | _ <u></u> | | V
R | | | | 7440-02-0
7440-09-7 | Nickel
Potassium | | - | | R | | | • | 7782-49-2 | | | - | | R | | | | 7440-22-4 | | | - | | R | | | | 7440-23-5 | | | - | | R | | | | 7440-28-0 | | | | | R | | | | 7440-62-2 | Vanadium- | | - | | R | | | | 7440-66-6 | Zinc | | - | | R | | | | | Cyanide_ | | | N | R | | | color Before: | | Clari | ty Before: | |
T | _
 exture: | | | olor After: | | Clari | ty After: | | A | rtifacts: | | | comments: | | | | | | | | FORM I - IN ILM02.1 # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Lab Name: AQUA | ATEC | | Contract: 91 | L082 | | K40426F | |----------------|------------------------|------------------|-----------------|-------------|-------|----------------| | Lab Code: AQUA | I_ Ca | se No.: BI | SAS No.: | | | SDG No.: 40202 | | Matrix (soil/w | | | | • | | ID: 208368 | | Level (low/med | l): LOW_ | | | Date : | Recei | ved: 11/10/93 | | % Solids: | 100. | 0 | | | | | | | | | /L or mg/kg dry | y weig | ht): | MG/KG | | | CAS No. | Analyte | Concentration | C Q | M | 1 | | | 7429-90-5 | Aluminum | | | | R | | | 7440-36-0 | Antimony_ | | | | IR | | | 7440-38-2 | Arsenic | | | | TR | | | 7440-39-3 | Barium Beryllium | | | | TR
TR | | | 7440-41-7
7440-43-9 | Cadmium | | | | IR I | | | 7440-70-2 | Calcium | | | | ir
R | | | 7440-47-3 | Chromium | ' | | | R R | | | 7440-48-4 | Cobalt | | - | | R | | | 7440-50-8 | Copper | | - | | R | | | 7439-89-6 | Iron | | | | R | | | | Lead | | | | TR | | \sim | | Magnesium | | | | TR . | | • | | Manganese | | | | TR | | | | Mercury | 0.08 | _ <u>Zn</u> | | .V | | | | Nickel | | - | N | nr. | | | 7440-09-7 | Potassium | | - | N | IR | | | 7782-49-2 | Selenium | | | N | IR | | | 7440-22-4 | Silver - | | | N | IR | | | 7440-23-5 | Sodium | | | | IR | | | 7440-28-0 | Thallium_ | | | | IR | | | 7440-62-2 | | | | | IR | | | 7440-66-6 | Zinc | | | | IR | | | | Cyanide_ | | - | N | IR | | | | l | | l l | | l | | Color Before: | | Clari | ty Before: | | ı | exture: | | Color After: | | Clari | ty After: | | P | Artifacts: | | Comments: | | | | | | | | | | | | | | ·. | | | | | | | | | | | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | | | | | · | | |----------------|--------------|--------------|-----------------|-----------|------------------|--| | | TEC | | Contract: 9 | 1082 | K40429F | | | Lab Code: AQUA | AI_ Ca | se No.: BI | O SAS No.: | SAS No.: | | | | Matrix (soil/w | water): FISH | - | | Lab Samp | ple ID: 214891 | | | Level (low/med | l): LOW_ | | | Date Rec | ceived: 11/10/93 | | | & Solids: | 100. | _
n | | | | | | , 5011us. | 100. | • | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight) | : MG/KG | | | | 1 | Τ | | г г | T- 1 | | | | CAS No. | Analyte | Concentration | C Q | M | | | • | | | | | - | | | | 7429-90-5 | | · | _ | NR | | | • | 7440-36-0 | Antimony_ | | [_] | NR | | | | 7440-38-2 | Arsenic | | | NR | | | | 7440-39-3 | Barium | | _ | NR | | | • | 7440-41-7 | Beryllium | | | NR | | | | 7440-43-9 | Cadmium_ | | _ | NR | | | | 7440-70-2 | Calcium_ | | _ | NR | | | | 7440-47-3 | Chromium_ | | _ | NR | | | | 7440-48-4 | Cobalt | | _ | NR | | | | 7440-50-8 | Copper | | _ | NR | | |
 7439-89-6 | Iron | · | _ | NR | | | _ | 7439-92-1 | Lead | | | NR | | | | | Magnesium | | _ | NR | | | | | Manganese | | | NR | | | | | Mercury_ | 0.04 | | [CV] | | | | | Nickel | | | NR | | | • | 7440-09-7 | Potassium | | | NR | | | | 7782-49-2 | Selenium_ | | |] NR | | | | | Silver | | | _ NR | | | | 7440-23-5 | Sodium | | | NR | | | | 7440-28-0 | Thallium_ | | | NR | | | | 7440-62-2 | Vanadium_ | | | NR | | | | 7440-66-6 | Zinc | | | NR | | | | | Cyanide_ | | | NR | | | | | | | _ | _!! | | | color Before: | | Clarit | ty Before: | i.
 | Texture: | | | olor After: | • | Clarit | ty After: | | Artifacts: | | | Comments: | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN ILM02.1 # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | | TEC | | Contract: 9: | 1082 | K40431F | |----------------|--------------------------|----------------------|-----------------|------------|-----------------| | Lab Code: AQUA | I_ Ca | se No.: BI | SAS No. | : | SDG No.: 40202 | | Matrix (soil/w | | | | | le ID: 214893 | | Level (low/med |): LOW_ | _ | · | Date Rece | eived: 11/10/93 | | % Solids: | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y weight): | : MG/KG | | | CAS No. | Analyte | Concentration | C Q | м | | | 7429-90-5 | Aluminum | | | NR | | | 7440-36-0 | Antimony_ | | | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium | | - | NR | | | 7440-41-7
 7440-43-9 | Beryllium
Cadmium | | - | NR | | | 7440-70-2 | Calcium | | - | NR
NR | | | 7440-47-3 | Chromium | | - | NR | | | 7440-48-4 | Cobalt | | - | NR | | | 7440-50-8 | Copper | | - | NR | | | 7439-89-6 | Iron | | - | NR | | _ | 7439-92-1 | Lead | | - | NR | | | | Magnesium | | - | NR | | | 7439-96-5 | Manganese | | | NR | | | 7439-97-6 | Mercury | 0.06 | _ ZN | cv | | | 7440-02-0 | Nickel | | | NR | | | 7440-09-7 | Potassium | | | NR | | | 7782-49-2 | Selenium_ | | | NR | | | 7440-22-4 | Silver | | _ | NR | | | 7440-23-5 | Sodium | | - | NR | | | | Thallium_ | | | NR | | | 7440-62-2 | Vanadium_ | | - | NR | | | 7440-66-6 | Zinc
Cyanide | | - | NR
NR | | | | cyanitue | | - | N.K. | | ' | · | | | 1-1 | 11 | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | | | | | | | | | | | | | | | # MISCELLANEOUS PARAMETERS ## MISCELLANEOUS PARAMETERS | | | | | % Lipids | | | | |-----------|-------------|--------|------------------|----------|----------------------|--|--| | Sample ID | Description | Sex | Fillet
Weight | Fillet | Remaining
Carcass | | | | K40360 | Carp | female | 746g | 12.03 | 17.7 | | | | K40365 | Carp | female | 513g | 4.09 | 7.1 | | | | K40366 | Carp | male | 517g | 5.90 | 5.3 | | | | K40367 | Carp | female | 407g | 2.21 | 7.7 | | | | K40368 | Carp | male | 502g | 3.84 | 7.7 | | | | K40391 | Carp | male | 475g | 4.32 | 7.3 | | | | K40424 | Carp | female | 409g | 3.19 | 5.1 | | | | K40425 | Carp | female | 441g | 1.44 | 3.9 | | | | K40426 | Carp | female | 311g | 1.08 | 2.8 | | | | K40429 | Carp | female | 507g | 1.30 | 3.1 | | | | K40431 | Carp | female | 490g | 1.44 | 5.4 | | | • ## DATA REVIEW FOR # ALLIED PAPER, INC./PORTAGE CREEK/KALAMAZOO RIVER SUPERFUND SITE SDG# 40219 PCB, PESTICIDE AND MERCURY ANALYSES BIOTA - FISH Analyses performed by: Aquatec, Inc. Colchester, Vermont Review performed by: Blasland, Bouck & Lee, Inc. Syracuse, New York ## **Summary** The following is an assessment of the Pesticide/PCB/PBB and Mercury data for SDG# 40219 for the Biota sampling of the Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund Site. Included with this assessment are the data review check sheets used in the review of the package and the corrected sample results. Analyses were performed on the following samples: | | | | | | Analysis | | | |-----------|--------|---------|-------------|-----------------|-----------------|--------|--| | Sample ID | Lab ID | Species | Description | Sample Location | Peet/PCB/
Hg | %Lipid | | | K40114W | 198335 | Sucker | whole body | Mosel Ave. | х | × | | | K40115W* | 196336 | Sucker | whole body | Mosel Ave. | x | x | | | K40116W | 196337 | Sucker | whole body | Mosel Ave. | x | × | | | K40117W | 196338 | Sucker | whole body | Mosel Ave. | x | × | | | K40381W | 201638 | Sucker | whole body | Plainwell Dam | × | x | | | K40382W | 201639 | Sucker | whole body | Plainwell Dam | х | x | | | K40383W | 201640 | Sucker | whole body | Plainwell Dam | x | × | | | K40384W | 201641 | Sucker | whole body | Plainwell Dam | × | x | | | K40385W | 201642 | Sucker | whole body | Plainwell Dam | x | × | | | K40386W | 201643 | Sucker | whole body | Plainwell Dam | × | x | | | K40392W | 201644 | Sucker | whole body | Mosel Ave. | × | × | | | K40393W | 201645 | Sucker | whole body | Mosel Ave. | × | × | | | K40394W | 201646 | Sucker | whole body | Mosel Ave. | × | x | | | K40395W | 201647 | Sucker | whole body | Mosel Ave. | × | x | | | K40396W | 201648 | Sucker | whole body | Mosel Ave. | × | х | | | K40397W | 201649 | Sucker | whole body | Mosel Ave. | × | x | | | K40398W | 201650 | Sucker | whole body | Mosel Ave. | × | х | | MS/MSD/DUP performed on sample ## PCB ANALYSES ### Introduction Analyses were performed according to the USEPA SW-846 method 8081, modified for PCB only analysis. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. The data presented in the package has been derived using a procedure developed by Aquatec, Inc. in an attempt to improve the analytical process of calibration, identification, and quantitation of PCBs as Aroclors. Key components of this procedure include: ## Calibration The response function of the electron capture detector is inherently non-linear, and while significant linearization is achieved for this detector by electronic means, some non-linearity remains. Power function linearization is used to "straighten the curve" and allow the use of response factors for calibration purposes. During the initial calibration a response factor is calculated for each peak in the individual Aroclors. A weighted response factor calculation has been used to adjust for non-linearity at the low end of the calibration curve. ## Identification Peak retention times are relative. Retention times are in set windows relative to the time markers DCB and TCMX. Time markers adjust for minor variations in column flow or instrument condition and allow the use of very tight windows which minimizes the number of both false positive and false negative peak identifications. The determination of "which Aroclor or mixture of Aroclors will produce a chromatogram most similar to that of the residue" is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The "most similar" Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. This is similar to the procedure presented by L.E. Slivon, P.M. Schumacher and A. Alford-Stevens for the determination of Aroclor composition from GC/MS level of chlorination results. Identification/quantitation of Aroclors in samples is based on the combined response of two columns, typically RTX-5 and RTX-35. The pooling of response combines the unique qualities of both columns to derive a more defined Aroclor pattern which less likely to be affected by interferents. Identification/quantitation data for the individual columns is provided in the package and can be used as a check on the combined column results. ## **Data Assessment** ## 1. Holding Time The specified holding time for PCB analyses from extraction is 40 days. All samples were analyzed within the specified holding time. ### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks,
are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No Aroclors were detected in the method or instrument blanks. ## 3. System Performance The system performance was acceptable for both columns. ### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. ### 4.1 Initial Calibration The method allows a maximum RSD of 20%. The %RSD was within acceptable limits for all Aroclors. ## 4.2 Continuing Calibration A maximum %D of 15 is allowed. All continuing calibrations were within the specified limits. ## 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recoveries were below acceptable control limits for one surrogate in samples K40114W and K40115WMSD. No qualifiers were added to the data based on the deviations. All other surrogate recoveries were within acceptable control limits. ## 6. Compound Identification The determination of Aroclor presence is made by expressing the unknown sample chromatogram as a linear combination of the Aroclors. The most similar Aroclor or mixture of Aroclors is determined by using a least squares minimization of the difference between the unknown chromatogram and the linear combination of Aroclors. Identification/quantitation of Aroclors is based on the combined response of the RTX-5 and RTX-35 columns. Identification/quantitation data for the individual columns is provided in the package and has been used as a check on the combined column results. A review of the sample chromatograms indicate that the Aroclors have been correctly identified/quantitated. ## 7. Matrix Spike/Matrix Spike Duplicate/Matrix Spike Blank Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. All matrix spike and matrix spike duplicate recoveries and the relative percent difference between recoveries (RPD) were within acceptable control limits. All spike recoveries in the matrix spike blank were within acceptable control limits. ## 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. ## DATA REVIEW CHECKLIST ### PCB Data Review Checklist | | YES | NO | NA_ | |--|----------|-------------|-----| | Data Completeness and Deliverables | | | | | is there a narrative or cover letter present? | <u>X</u> | · | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | <u>x</u> | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | x | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | X | | | | If yes, were the samples reanalyzed? | | X | | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | <u>.</u> | | | | 0 out of4 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | 0_ out of2 | | | | | Blanks | | | | | Is a Method Blank Summary Form present? | X | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | x | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | x | | | ### PCB Data Review Checklist - Page 2 | | YES | NO | NA | |---|----------|-------------|----| | Is the chromatographic performance acceptable for each instrument? | x | | | | Do any method/reagent/instrument blanks have positive results? | | X | | | Do any field/rinse blanks have positive results? | | | X | | Are there field/rinse/equipment blanks associated with every sample? | | X | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts present? | | | | | Arocior 1016/1260 | <u> </u> | | | | Aroclor 1221 | <u> </u> | | | | Aroclor 1232 | <u>x</u> | | | | Aroclor 1242 | <u> </u> | | | | Aroclor 1248 | X | | | | Arocior 1254 | X | | | | Instrument Blanks | X | | | | Are Initial Calibration Summary Forms present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses within limits for both columns (20% RSD) | X | | | | Have all samples been injected within a 12 hour period beginning with the injection of an instrument blank? | x | | | | Is a Calibration Verification Summary Form present and complete for each continuing standard analyzed? | × | | | | Are %D values for all compounds within limits (less than 15%)? | × | | | | Analytical Sequence Check | | | | | is a analytical sequence form present and complete for each column and each period of analyses? | x | | | | Was the proper analytical sequence followed? | <u> </u> | | | ### PCB Data Review Checklist - Page 3 | | YES | NO | NA | |---|----------------|-------------|----| | Cleanup Efficiency Verification | | | | | If GPC cleanup was performed, is Gel Permeation Chromatography Check Form present? | X | | | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits? | X | | | | PCB Identification | | | | | ls both a combined and single column Aroclor Identification Report present for every sample? | <u>x</u> | | | | Do the combined column and individual column Aroclor identifications agree? | x | | | | Were there any false negatives? | | X | | | Was GC/MS confirmation provided when required? | | | × | | Compound Quantitation and Reported Detection Lin | nits | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | | | | Were the baselines stable? | X _. | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | X | | ### PCB Holding Time and Surrogate Recovery Summary | Sample ID | Holding | Surrogates | - Column 1 | Surrogates | - Column 2 | |------------|--------------|------------|------------|------------|------------| | | Time | TCX | DCB | TCX | DCB | | K40114W | OK for all | ↓ (55) | ОК | ↓ (57) | ОК | | K40115W | samples
- | | | | | | K40115WMS | | | | | | | K40225WMSD | | Į (54) | • | | | | K40116W | | | | | | | K40117W | | | | | | | K40381W | | | | | | | K40382W | | | | | | | K40383W | | | | | | | K40384W | | | | | | | K40385W | | | | | | | K40386W | | | | | | | K40392W | | | | | | | K40393W | | | | | | | K40394W | | | | | | | K40395W | | | | | | | K40396W | | | | | | | K40397W | | | | | | | K40398W | | | | | | Surrogate Standards TCX Tetrachioro-m-xylene DCB Decachlorobiphenyl Qualifiers: D Surrogates diluted out Recovery high Recovery low t Unless otherwise noted, all parameters are within specified limits. ### PCB Calibration Summary Instrument: HP2087 Column: RTX-35 / RTX-5 | Date: | 5/8/94 2109 | 5/10 | 5/10 | 5/10 | 5/10 | 5/11 | 5/11 | |----------------------|-------------------|---------------|---------------|---------------|---------------|---------------|---------------| | Time: | to
5/9/94 1730 | 1244 | 1320 | 2117 | 2158 | 0504 | 0540 | | • | initial Cal. | Gont.
Cal. | Cont.
Cali | Cont.
Cal. | Cont.
Cel. | Cont.
Cal. | Cont.
Cal. | | | % RSD | % D | XD | %D | % D | % D | % D | | Aroclor 1016 | 5.0 / 4.7 | | 1.0 | | | | | | Aroclor 1221 | 3.8 / 2.8 | | | | | | | | Aroclor 1232 | 3.0 / 2.7 | <u> </u> | | | | | | | Aroclor 1242 | 3.7 / 2.9 | | | | 8.0 | | | | Aroclor 1248 | 3.6 / 3.1 | 5.0 | | 6.0 | | 7.5 | | | Aroclor 1254 | 9.3 / 8.9 | | | | | | 13.0 | | Aroclor 1260 | 3.0 / 3.0 | | | | | | | | Tetrachioro-m-xylene | 4.9 / 5.2 | | | | | | | | Decachiorobiphenyl | 8.1 / 8.4 | | | | | | | | Affected Samples: | | | | | | | ļ | · | Į | _ | ### PCB Calibration Summary - Page 2 Instrument: <u>HP6087</u> Column: <u>RTX-35 / RTX-5</u> | | | | | 3 | | | | |----------------------|--------------|---------------|---------------|---------------|----------------|---------------|---------------| | Date: | | 5/11 | 5/11 | | | | | | Time: | | 1027 | 1103 | | | | | | | initial Cal. | Cont.
Cal. | Cont.
Cal. |
Cont.
Cal. | Cont.
Call. | Cont.
Cal. | Cent.
Gel. | | , | % RSD | %D | %D | % D | *0 | %D | % D | | Aroclor 1016 | | | | | | | | | Aroclor 1221 | | | | | | | | | Aroclor 1232 | | | | <u> </u> | | | | | Aroclor 1242 | | | | | | | | | Aroclor 1248 | | 7.5 | | | | | | | Aroclor 1254 | | | | | | | | | Arocior 1260 | | | 6.0 | | | | | | Tetrachloro-m-xylene | | | | | | <u></u> | | | Decachlorobiphenyl | | | | | | | | | Affected Samples: |
 | | | | | | <u> </u> | | |
 | | | | | | ļ | <u> </u> | : | | | | | <u> </u> | | | | | | | | | | | | | | | | \
 | | | | į | | | | ŀ | | | | ### CORRECTED ANALYSIS SUMMARY FORMS EPA SAMPLE NO. K40114W Lab Code: Lab Name: Aquatec, Inc. AQUAI SDG: 40219 91082 Contract: Case: BIO **BIOTA** Phase Type: Lab Sample ID: 196335 10.0 Date Received: Phase Weight: (g) 09/03/93 Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 5.0 Date Analyzed: 05/11/94 Dilution Factor: Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 1.1 | | | 12672-29-6 | Aroclor-1248 | 0.25 | υ | | 11097-69-1 | Aroclor-1254 | 1.7 | | | 11096-82-5 | Aroclor-1260 | 0.25 | U | **EPA SAMPLE NO.** K40115W Lab Name: Aquatec, Inc. Lab Code: AQUAI 91082 BIO SDG: 40219 Contract: Case: Phase Type: **BIOTA** Lab Sample ID: 196336 09/03/93 10.0 Date Received: Phase Weight: (g) 1.0 Date Extracted: 04/13/94 (uL) Injection Volume: 5.0 Date Analyzed: 05/11/94 Dilution Factor: Sulfur Clean-up: N (Y/N) | COMPOUND | CONCENTRATION (mg/Kg) | Q | |--------------|---|--| | Aroclor-1016 | 0.64 | | | Aroclor-1221 | 0.25 | U | | Aroclor-1232 | 0.25 | U | | Arocior-1242 | 0.25 | U | | Aroclor-1248 | 0.25 | U | | Aroclor-1254 | 2.0 | | | Aroclor-1260 | . 0.24 | J | | | Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 | Aroclor-1016 0.64 Aroclor-1221 0.25 Aroclor-1232 0.25 Aroclor-1242 0.25 Aroclor-1248 0.25 Aroclor-1254 2.0 | Lab Code: _ Case: _ AQUAI BIO EPA SAMPLE NO. K40116W SDG: 40219 Phase Type: BIOTA Phase Weight: 10.0 (g) Injection Volume: 1.0 (uL) Dilution Factor: 5.0 91082 Lab Name: Aquatec, Inc. Contract: Lab Sample ID: 196337 Date Received: 09/03/93 Date Extracted: 04/13/94 Date Analyzed: 05/11/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.17 | J | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Arocior-1248 | 0.80 | | | 11097-69-1 | Aroclor-1254 | 0.86 | | | 11096-82-5 | Arocior-1260 | 0.16 | J | **EPA SAMPLE NO.** K40117W Lab Name: Aquatec, Inc. Lab Code: IAUDA 91082 BIO SDG: 40219 Contract: Case: **BIOTA** Lab Sample ID: 196338 Phase Type: 10.0 Date Received: 09/03/93 Phase Weight: **(g)** Date Extracted: 04/13/94 1.0 (uL) Injection Volume: _ Date Analyzed: 05/11/94 5.0 Dilution Factor: _ Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.74 | | | 12672-29-6 | Aroclor-1248 | 0.25 | υ | | 11097-69-1 | Arocior-1254 | 1.3 | | | 11096-82-5 | Aroclor-1260 | 0.16 | J | **EPA SAMPLE NO.** K40381W Lab Code: Lab Name: Aquatec, Inc. AQUAI 91082 Case: BIO SDG: 40219 Contract: **BIOTA** Phase Type: Lab Sample ID: 201638 10.0 Date Received: 10/16/93 Phase Weight: (g) Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 Dilution Factor: 5.0 Date Analyzed: 05/10/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.62 | | | 11104-28-2 | Arocior-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 1.5 | | | 11096-82-5 | Aroclor-1260 | 0.11 | J | **EPA SAMPLE NO.** K40382W Aquatec, Inc. Lab Code: **AQUAI** Lab Name: 91082 Case: BIO SDG: 40219 Contract: Phase Type: **BIOTA** Lab Sample ID: 201639 10.0 10/16/93 Date Received: Phase Weight: _ (g) . Injection Volume: (uL) Date Extracted: 04/13/94 1.0 Dilution Factor: 1.0 Date Analyzed: 05/10/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.050 | U | | 11104-28-2 | Aroclor-1221 | 0.050 | U | | 11141-16-5 | Aroclor-1232 | 0.050 | U | | 53469-21-9 | Aroclor-1242 | 0.050 | U | | 12672-29-6 | Aroclor-1248 | 0.50 | | | 11097-69-1 | Aroclor-1254 | 0.46 | | | 11096-82-5 | Aroclor-1260 | 0.085 | · | **EPA SAMPLE NO.** K40383W Lab Code: **AQUAI** Lab Name: Aquatec, Inc. 91082 Case: _ BIO SDG: 40219 Contract: **BIOTA** Lab Sample ID: 201640 Phase Type: _ Phase Weight: 10.0 (g) Date Received: 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 Dilution Factor: _ 5.0 Date Analyzed: 05/10/94 Sulfur Clean-up: Υ (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 1.4 | | | 11097-69-1 | Aroclor-1254 | 1.2 | | | 11096-82-5 | Aroclor-1260 | 0.21 | J | EPA SAMPLE NO. K40384W Lab Name: Aquatec, Inc. Lab Code: IAUDA Case: Contract: 91082 BIO SDG: 40219 **BIOTA** Lab Sample ID: 201641 Phase Type: Phase Weight: 10.0 **(g) Date Received:** 10/16/93 Injection Volume: __ 1.0 (uL) Date Extracted: 04/13/94 2.0 Date Analyzed: Dilution Factor: 05/10/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 1.3 | | | 11097-69-1 | Aroclor-1254 | 0.87 | | | 11096-82-5 | Aroclor-1260 | 0.18 | | Lab Code: Case: AQUAI BIO EPA SAMPLE NO. K40385W SDG: 40219 Phase Type: BIOTA Phase Weight: 10.0 (g) Injection Volume: 1.0 (uL) Dilution Factor: 2.0 Lab Name: Aquatec, Inc. Contract: 91082 Lab Sample ID: 201642 Date Received: 10/16/93 Date Extracted: 04/13/94 Date Analyzed: 05/10/94 Sulfur Clean-up: Y (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | 0 | |------------|--------------|-----------------------|---| | 12674-11-2 | Arocior-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.94 | | | 11097-69-1 | Arocior-1254 | 0.94 | | | 11096-82-5 | Aroclor-1260 | 0.15 | | EPA SAMPLE NO. K40386W Lab Name: _ Aquatec, Inc. Lab Code: AQUAI SDG:_ 91082 BIO 40219 Contract: Case: **BIOTA** Lab Sample ID: 201643 Phase Type: Phase Weight: 10.0 (g) Date Received: 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 Dilution Factor: _ 5.0 Date Analyzed: 05/10/94 Sulfur Clean-up: N (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.25 | U | | 12672-29-6 | Aroclor-1248 | 1.2 | | | 11097-69-1 | Aroclor-1254 | 0.77 | | | 11096-82-5 | Aroclor-1260 | 0.15 | J | **EPA SAMPLE NO.** K40392W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** Contract: 91082 BIO SDG: 40219 Case: **BIOTA** Phase Type: Lab Sample ID: 201644 10.0 Phase Weight: Date Received: 10/16/93 **(g)** Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 5.0 Dilution Factor: Date Analyzed: 05/10/94 Sulfur Clean-up: Ν (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | | |-------------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Aroclor-1242 | 0.75 | | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 Aroclor-1254 | 1.4 | | | | 11096-82-5 | Aroclor-1260 | 0.18 | J | EPA SAMPLE NO. K40393W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 40219 91082 BIO SDG: , Contract: Case: Phase Type: **BIOTA** Lab Sample ID: 201645 Phase Weight: 10.0 10/16/93 (0) **Date Received:** 1.0 Injection Volume: (uL) **Date Extracted:** 04/13/94 05/10/94 Dilution Factor: 5.0 Date Analyzed: Y Sulfur Clean-up: (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|--------------|-----------------------|-----| | 12674-11-2 | Aroclor-1016 | 0.25 | Į | | 11104-28-2 | Arocior-1221 | 0.25 | - (| | 11141-16-5 | Aroclor-1232 | 0.25 | - (| | 53469-21-9 | Aroclor-1242 | 0.71 | | | 12672-29-6 | Aroclor-1248 | 0.25 | (| | 11097-69-1 | Aroclor-1254 | 1.5 | | | 11096-82-5 | Aroclor-1260 | 0.18 | , | EPA SAMPLE NO. K40394W Lab Code: AQUAI Lab Name: Aquatec, Inc. 91082 BIO 40219 Case: SDG: Contract: **BIOTA** Lab Sample ID: 201646 Phase Type: 10.0 Phase Weight: **(g) Date Received:** 10/16/93 1.0 Date Extracted: 04/13/94 Injection Volume: (uL) 5.0 Dilution Factor: Date Analyzed: 05/10/94 Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND |
CONCENTRATION (mg/Kg) | | |------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Arocior-1242 | 0.48 | | | 12672-29-6 | Arocior-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 1.0 | | | 11096-82-5 | Aroclor-1260 | 0.11 | J | EPA SAMPLE NO. K40395W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 BIO SDG: Contract: Case: 40219 Phase Type: **BIOTA** Lab Sample ID: 201647 10.0 Phase Weight: Date Received: 10/16/93 (g) Injection Volume: (uL) Date Extracted: 1.0 04/13/94 Dilution Factor: 5.0 Date Analyzed: 05/11/94 Sulfur Clean-up: _ N (Y/N) | CAS NO. | D. COMPOUND CONCENTRA
(mg/Kg | | | | |------------|---------------------------------|------|---|--| | 12674-11-2 | Aroclor-1016 | 0.25 | υ | | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | | 53469-21-9 | Arocior-1242 | 0.65 | | | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | | 11097-69-1 | Aroclor-1254 | 1.5 | | | | 11096-82-5 | Aroclor-1260 | 0.21 | J | | EPA SAMPLE NO. K40396W Lab Name: Aquatec, inc. Lab Code: **AQUAI** SDG: 91082 Case: BIO 40219 Contract: Lab Sample ID: **BIOTA** 201648 Phase Type: 10.0 Phase Weight: **(g) Date Received:** 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 5.0 05/11/94 Dilution Factor: _ Date Analyzed: (Y/N) Sulfur Clean-up: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.25 | U | | 11104-28-2 | Aroclor-1221 | 0.25 | U | | 11141-16-5 | Aroclor-1232 | 0.25 | U | | 53469-21-9 | Arocior-1242 | 0.71 | | | 12672-29-6 | Aroclor-1248 | 0.25 | U | | 11097-69-1 | Aroclor-1254 | 1.5 | _ | | 11096-82-5 | Aroclor-1260 | 0.15 | J | EPA SAMPLE NO. K40397W Lab Name: Aquatec, Inc. Lab Code: **AQUAI** 91082 BIO SDG: 40219 Contract: Case: Phase Type: **BIOTA** Lab Sample ID: 201649 10.0 Phase Weight: (g) **Date Received:** 10/16/93 Injection Volume: 1.0 (uL) Date Extracted: 04/13/94 Dilution Factor: 2.0 Date Analyzed: 05/11/94 Sulfur Clean-up: Y (Y/N) | CAS NO. COMPOUND | | CONCENTRATION (mg/Kg) | | |------------------|--------------|-----------------------|---| | 12674-11-2 | Aroclor-1016 | 0.38 | | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 0.10 | U | | 11097-69-1 | Aroclor-1254 | 0.97 | | | 11096-82-5 | Aroclor-1260 | 0.11 | | **EPA SAMPLE NO.** K40398W Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40219 Phase Type: **BIOTA** 201650 Lab Sample ID: 10.0 Phase Weight: **(g)** Date Received: 10/16/93 Injection Volume: 1.0 (uL) 04/13/94 Date Extracted: 2.0 05/11/94 **Dilution Factor:** Date Analyzed: Sulfur Clean-up: (Y/N) | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | <u> </u> | |------------|--------------|-----------------------|----------| | 12674-11-2 | Aroclor-1016 | 0.10 | U | | 11104-28-2 | Aroclor-1221 | 0.10 | U | | 11141-16-5 | Aroclor-1232 | 0.10 | U | | 53469-21-9 | Aroclor-1242 | 0.10 | U | | 12672-29-6 | Aroclor-1248 | 1.2 | | | 11097-69-1 | Aroclor-1254 | 1.3 | | | 11096-82-5 | Aroclor-1260 | 0.21 | | ### PESTICIDE ANALYSES #### Introduction Analyses were performed according to the USEPA SW-846 Method 8081. The data review process is intended to evaluate the data on a technical basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission. During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with National Functional Guidelines: - U The compound was analyzed for but not detected. The associated value is the compound quantitation limit. - J The compound was positively identified; however, the associated numerical value is an estimated concentration only. - B The compound has been found in the sample as well as its associated blank, its presence in the sample may be suspect. - N The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. - JN The analysis indicates the presence of a compound for which there is presumptive evidence to make a tentative identification. The associated numerical value is an estimated concentration only. - E The compound was quantitated above the calibration range. - D Concentration is based on a diluted sample analysis. - C Identification confirmed by GC/MS. - UJ The compound was not detected above the reported sample quantitation limit. However, the reported limit is approximate and may or may not represent the actual limit of quantitation. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### Data Assessment #### 1. Holding Time The holding time for pesticide extracts is 40 days from extraction to analysis. No deviations from this holding time were noted. #### 2. Blank Contamination Quality assurance blanks, i.e., method and instrument blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Method blanks measure laboratory contamination during preparation. Instrument blanks measure instrument contamination and sample cross-contamination. No target compounds were detected in either the method blanks or instrument blanks. #### 3. System Performance The resolution and compound breakdown was within acceptable limits for both columns. #### 4. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 4.1 Initial Calibration A maximum RSD of 20% is allowed. All initial calibrations were within the specified limit. #### 4.2 Continuing Calibration A maximum RPD of 25% is allowed. All continuing calibrations were within the specified limit with the following exceptions: Instrument HP2404 - RTX-5 5/14/94 00:50 2-Bromobiphenyl 30.6% The data for this compound in the associated samples K40394W, K40395W and K40396W were qualified as estimated due to the deviation. #### Instrument HP2404 - RTX-5 5/20/94 01:18 2-Bromobiphenyl 55.4% The data for this compound in the associated samples K40397W and K40398W were qualified as estimated due to the deviation. #### 5. Surrogates / System Monitoring Compounds All samples to be analyzed for organic compounds are spiked with surrogate compounds prior to sample preparation to evaluate overall laboratory performance and efficiency of the analytical technique. Recovery was above the acceptable control limit for one surrogate in sample K40116W. No qualifiers were added to this sample based on surrogate performance. All other surrogate recoveries were within acceptable control limits. #### 6. Compound Identification The retention times of pesticide/PCB compounds must fall within the calculated retention time windows for both the primary and confirmation columns. The quantitated concentrations between the two columns exceeded the 25% difference limit for the following samples and compounds: | K40114W | Aldrin Heptachlor Epoxide gamma-Chlordane alpha-Chlordane 4,4'-DDE cis-Nonachlor 4,4'-DDT | 34.0%
136.6%
127.3%
28.6%
28.7%
47.6%
547.4% | |---------|---|--| | K40115W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
cis-Nonachlor
4,4'-DDT | 51.4%
88.9%
122.9%
32.1%
545.8% | | K40116W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 38.0%
60.4%
133.3%
30.5%
566.7% | 1 | K40117W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 35.3%
160.5%
126.3%
53.5%
646.2% | |---------|---|--| | K40381W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 35.3%
160.5%
126.3%
53.5%
646.2% | | K40382W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE | 42.9%
2381.0%
207.7%
33.3% | | K40383W | Aldrin Heptachlor Epoxide gamma-Chlordane alpha-Chlordane 4,4'-DDE cis-Nonachlor 4,4'-DDT | 32.7%
807.1%
150.0%
30.0%
44.2%
41.2%
586.7% | | K40384W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
cis-Nonachlor
4,4'-DDT | 30.2%
115.2%
150.0%
51.4%
28.6%
636.4% | | K40385W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 34.6%
686.4%
135.0%
45.6%
618.8% | | K40386W | Aldrin
Heptachlor Epoxide
gamma-Chlordane
4,4'-DDE
4,4'-DDT | 28.6%
83.3%
*135.7%
58.8%
640.0% | | K40392W | Aldrin
Heptachlor
Epoxide
gamma-Chlordane
4,4'-DDE
cis-Nonachlor
4,4'-DDT | 43.2%
100.0%
160.0%
30.0%
31.6%
562.5% | | 12.4.000.0W | A1 | 00.60 | |---|--------------------|---------| | K40393W | Aldrin | 28.6% | | | Heptachlor Epoxide | 987.1% | | | gamma-Chlordane | 250.0% | | | alpha-Chlordane | 60.0% | | | 4,4'-DDE | 33.8% | | | 4,4'-DDT | 611.8% | | K40394W | Aldrin | 46.4% | | | Heptachlor Epoxide | 2263.6% | | | gamma-Chlordane | 141.7% | | | 4,4'-DDE | 31.5% | | | cis-Nonachlor | 35.7% | | | 4,4'-DDT | 608.3% | | K40395W | Aldrin | 40.5% | | | Heptachlor Epoxide | 122.6% | | | gamma-Chlordane | 166.7% | | | 4,4'-DDE | 29.3% | | | 4,4'-DDT | 576.5% | | K40396W | Aldrin | 44.0% | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Heptachlor Epoxide | 104.4% | | | gamma-Chlordane | 136.4% | | | 4,4'-DDE | 36.4% | | | 4,4'-DDT | 595.5% | | K40397W | Aldrin | 48.0% | | 114000717 | gamma-Chiordane | 150.0% | | | trans-Nonachlor | 233.3% | | • | 4,4'-DDE | 37.2% | | | 4,4'-DDT | 630.0% | | K40398W | Aldrin | 37.5% | | 1,7000011 | gamma-Chlordane | 131.3% | | | trans-Nonachlor | 235.7% | | | 4,4'-DDE | 40.7% | | | cis-Nonachlor | 41.2% | | | 4,4'-DDT | 621.4% | | | .,. 551 | J=/0 | All data in the samples for the compounds listed has been qualified. Data with %D values between 25 and 50% has been qualified as estimated, J. All data with %D values between 50 and 90% has been qualified as estimated with presumptive evidence of presence, JN. All data with %D values greater than 90% has been rejected. #### 7. Matrix Spike/Matrix Spike Duplicate Matrix spike and matrix spike duplicate data are used to assess the precision and accuracy of the analytical method. Recoveries for Aldrin and Dieldrin were above the acceptable control limit in both the matrix spike and matrix spike duplicate samples. The elevated recoveries were most likely due to positive interference from PCBs present in the samples. The blank spike associated with the MS/MSD had acceptable recoveries for all compounds. No qualifiers were added to the samples based on matrix spike performance. #### 8. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviations specifically mentioned in this review, the overall data quality is within the guidelines listed in the analytical method. **Data Validation Checksheets** ### Pesticide Data Validation Checklist | | YES | NO | NA | |--|----------|-------------|-------------| | Data Completeness and Deliverables | | | | | is there a narrative or cover letter present? | X | | | | Are the samples numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Holding Times | | | | | Have any holding times been exceeded? | | X | | | Surrogate Recovery | | | | | Are the surrogate recovery forms present? | X | | | | Are all the samples listed on the appropriate surrogate recovery form? | x | | | | Are the outliers correctly marked with an asterisk? | X | | | | Were recoveries of TCMX or DCB outside of specified limits for any sample or blank? | x | | | | If yes, were the samples reanalyzed? | | X | | | Were the method blanks reanalyzed? | | | X | | Matrix Spikes | | | | | Is there a matrix spike recovery form present? | X | | | | Were matrix spikes analyzed at the required frequency? | X | | | | How many spike recoveries were outside of QC limits? | | | | | 4 out of8 | | | | | How many RPDs for matrix spike and matrix spike duplicate were outside of QC limits? | | | | | | | | | | Blanks | | | | | is the method blank summary form present? | <u> </u> | | | | Has a method blank been analyzed for each set of samples or for each 20 samples, whichever is more frequent? | X | | | | Has an instrument blank been analyzed at the beginning of each 12 hour period following the initial calibration? | X | | | | | | | | ### Pesticide/PCB Data Validation Checklist - Page 2 | | YES | NO | NA | |--|------------|-------------|----| | Is the chromatographic performance acceptable for each instrument? | <u> </u> | | | | Do any method/reagent/instrument blanks have positive results? | | × | | | Do any trip/field/rinse blanks have positive results? | | | x | | Are there field/rinse/equipment blanks associated with every sample? | | × | | | Calibration and GC Performance | | | | | Are the following chromatograms and data printouts pre blanks, and MS/MSD? | sent for a | all samples | • | | peak resolution check | <u> </u> | | | | performance evaluation mixtures (BCS) | X | | | | Toxaphene multipoint calibration | X | | | | Pesticide/PBB multipoint calibration | | | | | Pesticide/PBB mid-point standard | X | | | | instrument blanks | X | | | | Are Forms VI 1-4 present and complete for each column and analytical sequence? | X | | | | Are the linearity criteria for the initial analyses if INDA and INDB within limits for both columns? | X | | | | Is the resolution between any two adjacent peaks in the resolution check mixture > 60% for both columns? | X | | | | Is Form VII-1 present for each BCS analyzed for both columns? | X | | | | Has the individual % breakdown exceeded 20% on either column for 4,4'-DDT | | X | | | Are all the relative percent difference (RPD) values for all PEM analytes < 25%? | | x | | | Is Form VII-2 present and complete for each mid-point standard analyzed? | X | | | | Are RPD values for all compounds < 25%? | | X | | | Analytical Sequence Check | | | | | Is Form VIII present and complete for each column and each period of analyses? | x | | | ### Pesticide/PCB Data Validation Checklist - Page 3 | | YES | NO | NA | |---|----------|----------|-----------| | Was the proper analytical sequence followed? | <u> </u> | | | | Cleanup Efficiency Verification | | | | | Is Form IX-1 present for each lot of Florisil cartridges used? | x | | | | Are all samples listed on the form? | X | | | | If GPC cleanup was performed, is Form IX-2 present? | | | X | | Are percent recoveries of the compounds used to check the efficiency of the cleanup procedure within QC limits for: | | | | | Florisil cartridge check (80-120%) | X | | | | GPC calibration (80-110%) | | | X | | Pesticide/PBB identification | | | | | Is a Form X present for every sample in which a pesticide or PCB was detected? | <u> </u> | | | | Was GC/MS confirmation provided when required? | | | X | | Is the percent difference (%D) calculated for the positive sample results on the two columns less than 25%? | | X | | | Were there any false negatives? | | X | | | Compound Quantitation and Reported Detection Limit | 8 | | | | Are the reporting limits adjusted to reflect sample dilutions, and for soils, sample moisture? | x | | | | Chromatogram Quality | | | | | Were the baselines stable? | <u> </u> | | | | Were any electronegative displacement (negative peaks) or unusual peaks detected? | | X | حواصدونين | | Field Duplicates | | | | | Where field duplicates submitted with the samples? | | <u> </u> | | #### Pesticide/PBB Qualifier Summary Holding Time and Surrogates | Sample ID | Holding | Holding Surrogates - Co | | Surrogates - Column 2 | | | |------------|------------|-------------------------|---------|-----------------------|---------|--| | | Time | TCX | DCB | TCX | DCB | | | K40114W | OK for all | ОК | | ок | | | | K40115W | samples | | | | | | | K40115WMS | | | | | | | | K40115WMSD | | | | | • | | | K40116W | | | † (154) | | † (152) | | | K40117W | | | | | | | | K40381W | | | | | | | | K40382W | | | | | | | | K40383W | | | | | | | | K40384W | | | | | | | | K40385W | | | | | | | | K40386W | | | | | | | | K40392W | | | | | | | | K40393W | | | | | | | | K40394W | | | | | | | | K40395W | | | | | | | | K40396W | | | | | | | | K40397W | | | | | | | | K40398W | | | | | | | Surrogates: TCX Tetrachloro-m-xylene DCB Decachlorobiphenyl Qualifiers: D Surrogate diluted out Recovery high Recovery low Unless otherwise noted, all samples are within specified limits. ### Pesticide/PBB Calibration Summary Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/12/94 | 5/13 | 5/13 | 5/14 | | | |-----------------------------|------------|------------|-------------|---------|------------|-------------| | Time: | 17:54 | 08:10 | 16:30 | 00:50 | | | | | initial | Cont. | Cont. | Cont. | Cont. | Cont. | | ٠ | Cal. | Cal.
%D | Cal. | Cal. | Gal.
%D | Cal. | | 2-Bromobiphenyl | %RSD
ok | ok | ok | 30.2 | | <u>%0</u> | | 3-Bromobiphenyl | | | <u></u> | | | | | 4-Bromobiphenyl | | | | | | | | Hexachlorobenzene | | | | 1 | | | | gamma-BHC
(Lindane) | | | | | | | | Aldrin | | | | | | | | Heptacior epoxide | | | | | | | | gamma-Chlordane | | | | | | | | alpha-Chiordane | | | | | | | | trans-Nonachlor | | | | | | | | 4,4'-DDE | | | | | | | | Dieldrin | | | | | | | | 4,4'-DDD | | | | | | | | cis-Nonachlor | | | | | | | | 4,4'-DDT | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | Toxaphene | | | | | | | | Tetrachloro-m-xylene | | | | | | | | Decachiorobiphenyl | | | | | | | | Affected Samples: | | | | K40394W | | | | [| | | | K40395W | | | | | | | | K40396W | | | | | | | | | | | | | | | | | | | ### Pesticide/PBB Calibration Summary - Page 2 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/12/94 | 5/13 | 5/13 | 5/14 | | | |-----------------------------|---------|-------|--------------|-----------|----------|------------| | Time: | 17:54 | 08:10 | 16:30 | 00:50 | | | | | Initial | Cont. | Cont. | Cont. | Cont. | Cont. | | | Cai, | Cal | Cal. | Cat. | Cal. |
Cal. | | | %RSD | %D | % D | XD | %D | % D | | 2-Bromobiphenyl | ok | ok | <u>ok</u> | ok | | | | 3-Bromobiphenyl | | | | ļ | | | | 4-Bromobiphenyl | | | | | - | | | Hexachlorobenzene | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | Aldrin | | | | | | | | Heptacior epoxide | | | | | | | | gamma-Chlordane | | | | | | | | alpha-Chlordane | | | | | | | | trans-Nonachlor | | | | | | | | 4,4'-DDE | | | | | | | | Dieldrin | | | | | | | | 4,4'-DDD | | | | | | | | cis-Nonachlor | | | | | | | | 4,4'-DDT | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | Toxaphene | | | | | | | | Tetrachloro-m-xylene | | | | € | | | | Decachlorobiphenyl | | | | | | | | Affected Samples: | | | | | | | | ſ | | | <u>-</u> | | | | | Ţ | | | | | | | | [| | | | | <u> </u> | | | T | | | | | | | ### Pesticide/PBB Calibration Summary - Page 3 Instrument: <u>HP2404</u> Column: <u>RTX-5</u> | Date: | 5/17/94 | 5/19 | 5/20 | | | | |-----------------------------|----------------|---------------|---------------|---------------|---------------|--------------| | Time: | 17:19 | 16:57 | 01:18 | | | | | 1 | Initial
Cal | Cont.
Cal. | Cont.
Cal. | Cont.
Cel. | Coni.
Cali | Cont.
Cal | | | %RSD | % D | % D | % D | % D | % D | | 2-Bromobiphenyl | ok | ok | 55.4 | | | | | 3-Bromobiphenyl | | | | | | | | 4-Bromobiphenyl | | | | | | | | Hexachlorobenzene | | | | | | | | gamma-BHC
(Lindane) | | | | | | | | Aldrin | | | | | | | | Heptaclor epoxide | | | | | | | | gamma-Chlordane | | | | | | | | aipha-Chiordane | | | | | | | | trans-Nonachlor | | | | | | | | 4,4'-DDE | | | | | | | | Dieldrin | | | | | | | | 4,4'-DDD | | | | | | | | cis-Nonachior | | | | | | | | 4,4'-DDT | | | | | | | | Hexabromobiphenyl
(BP-6) | | | | | | | | Toxaphene | | | | | | | | Tetrachioro-m-xylene | | | | <u> </u> | | | | .Decachlorobiphenyl | | | | | | | | Affected Samples: | | | K40397W | | | | | | | | K40398W | | | | | | | | | | | | | [| | | | | | | | Γ | | | | | | | ### Pesticide/PBB Calibration Summary - Page 4 Instrument: <u>HP2404</u> Column: <u>RTX-35</u> | Date: | 5/17/94 | 5/19 | 5/20 | | | | |-----------------------------|-----------------|---------------|---------------|--|---------------|---------------| | Time: | 17:19 | 16:57 | .01:18 | | | | | ١ | Initial
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | Cont.
Cal. | | | *ASD | %D | % D | % D | % D | % 0 | | 2-Bromobiphenyl | ok | ok | ok | | · | | | 3-Bromobiphenyl | | | | | | | | 4-Bromobiphenyl | | | | | | | | Hexachlorobenzene | | | | | | | | gamma-BHC
(Lindane) | · | | | | | | | Aldrin | | | | | | | | Heptacior epoxide | | | | | | | | gamma-Chlordane | | - | | | | | | alpha-Chlordane | | | | | | | | trans-Nonachior | | | | | | | | 4,4'-DDE | | | | | | | | Dieldrin | | | | | | | | 4,4'-DDD | | | | | | | | cis-Nonachlor | | | | | | | | 4,4'-DDT | | | | | | _ | | Hexabromobiphenyl
(BP-6) | | | | | ľ | | | Toxaphene | | | | | | | | Tetrachloro-m-xylene | | | | <u>. </u> | | | | Decachlorobiphenyl | | | | | | | | Affected Samples: | | | | <u> </u> | Ţ | | | | | | | | | | | | | | | Corrected Sample Analysis Data Sheets Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40114W 40219 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 196335 Date Received: 09/03/93 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO SDG:_ | | | | | | _ | |---------------|------------|--------------------|-----------------------|---|----| | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | | 58-89-9 | gamma-BHC | 0.0050 | U | f | | | 309-00-2 | Aldrin | 0.050 | 7 | | | | 1024-57-3 | Heptachler Epoxide | 0.041 | | R | | \sqsubseteq | 5103-74-2 | gamma-Chlordane- | 0.022 | | R | | | 5103-71-9 | alpha-Chlordane | 0.021 | 7 | | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | | 72-55-9 | 4,4'-DDE | 0.087 | C | ŀ | | | 60-57-1 | Dieldrin | 0.010 | U | | | | 72-54-8 | 4,4'-DDD | 0.039 | | | | | 5103-73-1 | cis-Nonachlor | 0.021 | J | | | | 50-29-3 | 4,4'-DDT | 0.019 | | R | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | `` | | | 8001-35-2 | Toxaphene | 0.20 | U | | | | | | | | , | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40115W 40219 Phase Type: Biota Phase Weight: 10.0 Soxhiet Extraction: Dilution Factor: 1.0 Lab Sample ID: 196336 Date Received: 09/03/93 **Date Extracted:** 04/13/94 05/13/94 Date Analyzed: Sulfur Clean-up: NO SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|----------|------| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | 1 | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | 1 | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | 1 | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | [| | 58-89-9 | gamma-BHC | 0.0050 | υ | 1 | | 309-00-2 | Aldrin | 0.037 | JN | | | 1024-57-3 | Heptachlor Epoxide | 0.045 | VC | | | 5103 74-2 | gemme-Chlordene | 0.022 | | R | | 5103-71-9 | alpha-Chlordane | 0.019 | | ļ' ` | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.11 | |] | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.035 | | | | 5103-73-1 | cis-Nonachlor | 0.028 | エ |] | | 50-29-3 | 4,4'-DDT | 0.024 | |]R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U |] ` | | 8001-35-2 | Toxaphene | 0.20 | U | } | Client ID No. K40116W Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 40219 Case: BIO SDG: Lab Sample ID: 196337 Phase Type: **Date Received:** 09/03/93 **Biota** Phase Weight: 04/13/94 10.0 **Date Extracted:** Extraction: Soxhlet Date Analyzed: 05/13/94 NO Dilution Factor: 1.0 Sulfur Clean-up: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | Ü | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | Ü | | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ū | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.050 | Ч | | | 1024-57-3 | Heptachlor Epoxide | 0.048 | M | | | 5103-74-2 | gamma-Chlordane- | 0.021 | | ŀR | | 5103-71-9 | alpha-Chlordane | 0.016 | | | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.082 | 4 | | | 60-57-1 | Dieldrin | 0.010 | Ü | | | 72-54-8 | 4,4'-DDD | 0.027 | | | | 5103-73-1 | cis-Nonachlor | 0.022 | | | | 50-29-3 | 4,4' DDT | 0.018 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | • | | 8001-35-2 | Toxaphene | 0.20 | U | | | | | | | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO 1.0 K40117W 196338 Client ID No. Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: SDG: 40219 Date Received: 09/03/93 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO Lab Sample ID: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |--------------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.041 | JN | | 1024 57 3 | Heptachlor Epoxide | 0.024 | | | 5103-74-2 | gamma-Chlordane | 0.020 | | | 5103-71-9 | alpha-Chiordane | 0.010 | JN | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.077 | | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.020 | | | 5103-73-1 | cis-Nonachlor | 0.021 | | | 50 20 3 | 4,4' DDT | 0.017 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: IAUDA Contract: 91082 BIO Case: Client ID No. K40381W SDG: 40219 Phase Type: Biota Phase Weight: 10.0 Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201638 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO | Q | | |----|---| | U | 1 | | U | 1 | | U | 1 | | U | 1 | | U | 1 | | J | 1 | | | 1R | | | 1R | | U | 1 | | U | 1 | | JN | 1 | | U | 1 | | | 1 | | | 1 | | | IR | | Ü | 1'' | | U |] | | | 0
0
0
0
0
0
0
0
0
0
0 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40382W 40219 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201639 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | |------------|--------------------|-----------------------|---|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | į | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ū | | | 58-89-9 | gamma-BHC | 0.0050 | Ū | ĺ | | 309-00-2 | Aldrin | 0.028 | 7 | | | 1024-57-3 | Heptachlor-Epoxide | 0.021 | | R | | 5103-74-2 | gamma-Chlordane | 0.0078 | | lŘ | | 5103-71-9 | alpha-Chiordane | 0.0057 | | Ì | | 39765-80-5 | trans-Nonachlor | 0.0050 | υ | | | 72-55-9 | 4,4'-DDE | 0.033 | 7 | | | 60-57-1 | Dieldrin | 0.010 | U | ĺ | | 72-54-8 | 4,4'-DDD | 0.010 | | l | | 5103-73-1 | cis-Nonachlor | 0.010 | | | | 50-29-3 | 4,4'-DDT | 0.010 | U | ı | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | | | | | | | 1.0 Dilution Factor: Client ID No. Lab Name: Aquatec, Inc. K40383W Lab Code: AQUAI Contract: 91082 40219 Case: BIO SDG: Lab Sample ID: 201640 Phase Type:
Biota Date Received: 10/16/94 Phase Weight: 10.0 Date Extracted: 04/13/94 Extraction: Soxhlet 05/13/94 Date Analyzed: Sulfur Clean-up: NO | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ū | | | 58-89-9 | gamma-BHC | 0.0050 | Ū | | | 309-00-2 | Aldrin | 0.052 | 7 | | | 1024 57 3 | Heptachlor Epoxide | 0.042 | | -R | | 5103-74-2 | gamma Chlordane | 0.018 | | R | | 5103-71-9 | alpha-Chlordane | 0.010 | J | , | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | İ | | 72-55-9 | 4,4'-DDE | 0.052 | 4 | | | 60-57-1 | Dieldrin | 0.010 | Ū | | | 72-54-8 | 4,4'-DDD | 0.019 | | : | | 5103-73-1 | cis-Nonachlor | 0.017 | 5 | | | 50-29-3 | 4,4' DDT | 0.015 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | , | | 8001-35-2 | Toxaphene | 0.20 | U | | | | | | | | Lab Name: Aquatec, Inc. K40384W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40219 Lab Sample ID: 201641 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201641 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO Client ID No. | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|----|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.043 | J | | | 1024-57-3 | Heptachler Epoxide | 0.033 | | -R | | 5103-74-2 | gamma-Chlordane | 0.014 | | R | | 5103-71-9 | alpha-Chlordane | 0.0077 | | • | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.037 | JN | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.014 | | | | 5103-73-1 | cis-Nonachlor | 0.014 | 7 | - | | 50 20 3 | 4,4' DDT | 0.011 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Client ID No. Aquatec, Inc. K40385W Lab Name: Lab Code: AQUAI Contract: 91082 SDG: 40219 Case: BIO Lab Sample ID: 201642 Phase Type: Date Received: 10/16/94 **Biota** Phase Weight: 10.0 Date Extracted: 04/13/94 9 Extraction: Soxhlet Date Analyzed: 05/13/94 Dilution Factor: 1.0 Sulfur Clean-up: NO | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|----------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.052 | T | | | 1024 57 3 | Heptachlor Epoxide | 0.044 | | R | | 5103-74-2 | gamma-Chlordane | 0.020 | | Ŕ | | 5103-71-9 | alpha-Chlordane | 0.011 | | | | 39765-80-5 | trans-Nonachlor | 0.0050 | Ū | | | 72-55-9 | 4,4'-DDE | 0.057 | J | ı | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.021 | | | | 5103-73-1 | cis-Nonachlor | 0.020 | | | | 50-29-3 | 4,4'-DDT | 0.016 | | -R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | • | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40219 Lab Sample ID: 201643 Client ID No. 10/16/94 Phase Type: **Biota** Date Received: Phase Weight: 10.0 Date Extracted: 04/13/94 Extraction: Soxhlet Date Analyzed: 05/13/94 Dilution Factor: Sulfur Clean-up: 1.0 NO | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | |------------|--------------------|-----------------------|----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | 58-89-9 | gamma-BHC | 0.0050 | U | | 309-00-2 | Aldrin | 0.042 | J | | 1024-57-3 | Heptachler Epoxide | 0.036 | | | 5103-74-2 | gamma-Chiordane | 0.014 | | | 5103-71-9 | alpha-Chlordane | 0.0075 | | | 39765-80-5 | trans-Nonachior | 0.0050 | U | | 72-55-9 | 4,4'-DDE | 0.034 | NC | | 60-57-1 | Dieldrin | 0.010 | U | | 72-54-8 | 4,4'-DDD | 0.013 | | | 5103-73-1 | cis-Nonachlor | 0.012 | | | 50-29-3 | 4,4' DDT | 0.010 | | | 36355-01-8 | Hexabromobiphenyl | . 0.020 | U | | 8001-35-2 | Toxaphene | 0.20 | U | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40392W SDG: 40219 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201644 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO | | | | | _ | |------------------------|--------------------|-----------------------|---|-----| | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | 1 | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U |] | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | } | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | 1 | | 58-89-9 | gamma-BHC | 0.0050 | U |] | | 309-00-2 | Aldrin | 0.037 | J |] | | 1024 57 3 | Heptachlor Epoxide | 0.038 | | ₽R. | | - 5103 74 2 | gamma Chlordane | 0.015 | | R | | 5103-71-9 | alpha-Chiordane | 0.011 | |] ` | | 39765-80-5 | trans-Nonachior | 0.0050 | U |] | | 72-55-9 | 4,4'-DDE | 0.070 | ゴ | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.024 | |] | | 5103-73-1 | cis-Nonachlor | 0.019 | J | 1 | | 50-29-3 | 4,4'-DDT | 0.016 | | 1R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | 1 | | 8001-35-2 | Toxaphene | 0.20 | U |] | | | | | | | Lab Name: Aquatec, Inc. K40393W Lab Code: AQUAI Contract: 91082 Case: BIO SDG: 40219 Lab Sample ID: 201645 hase Type: Biota Date Received: 10/16/94 Client ID No. | Phase Type: | Biota | | Date Received: | 10/16/94 | |------------------|---------|---|------------------|----------| | Phase Weight: | 10.0 | g | Date Extracted: | 04/13/94 | | Extraction: | Soxhlet | | Date Analyzed: | 05/13/94 | | Dilution Factor: | 1.0 | | Sulfur Clean-up: | NO | | • | | | _ | | | | | | | | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | ۵ | | |------------|--------------------|-----------------------|----|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U |] | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U |] | | 118-74-1 | Hexachlorobenzene | 0.0050 | U |] | | 58-89-9 | gamma-BHC | 0.0050 | U |] | | 309-00-2 | Aldrin | 0.042 | 5 |] | | 1024-57-3 | Heptachlor Epoxide | 0.031 | | 1R | | 5103 74 2 | gamma Chlordane | 0.012 | | R | | 5103-71-9 | alpha-Chlordane | 0.0075 | JM | | | 39765-80-5 | trans-Nonachlor | 0.0050 | U |] | | 72-55-9 | 4,4'-DDE | 0.074 | 7 |] | | 60-57-1 | Dieldrin | 0.010 | U |] | | 72-54-8 | 4,4'-DDD | 0.022 | | } | | 5103-73-1 | cis-Nonachlor | 0.021 | |] | | 50-29-3 | 4,4' DDT | 0.017 | |]R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U |] ` | | 8001-35-2 | Toxaphene | 0.20 | Ū |] | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40394W 40219 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201646 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO SDG: | Q | N | CONCENTRATION (mg/Kg) | COMPOUND | CAS NO. | |---|---|-----------------------|--------------------|------------| | U | | 0.010 | 2-Bromobiphenyl | 2052-07-5 | | Ū | | 0.010 | 3-Bromobiphenyl | 2113-57-7 | | U | | 0.010 | 4-Bromobiphenyl | 92-66-0 | | Ū | | 0.0050 | Hexachlorobenzene | 118-74-1 | | Ū | | 0.0050 | gamma-BHC | 58-89-9 | | | | 0.028 | Aldrin | 309-00-2 | | | | 0.022 | Heptachlor Epoxide | 1024 57 3 | | | | 0.012 | gamma Chiordano | 5103 74 2 | | | | 0.0079 | alpha-Chlordane | 5103-71-9 | | Ü | | 0.0050 | trans-Nonachlor | 39765-80-5 | | | | 0.054 | 4,4'-DDE | 72-55-9 | | Ü | | 0.010 | Dieldrin | 60-57-1 | | | | 0.015 | 4,4'-DDD | 72-54-8 | | য | | 0.014 | cis-Nonachlor | 5103-73-1 | | | | 0.012 | 4,4' DDT | 50-29-3 | | Ū | | 0.020 | Hexabromobiphenyl | 36355-01-8 | | Ū | | 0.20 | Toxaphene | 8001-35-2 | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40395W 40219 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201647 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | α | | |------------|--------------------|-----------------------|---|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.037 | 4 | | | 1024 57 3 | Heptachlor Epoxide | 0.031 | | R | | 5103-74-2 | gamma Chiordane | 0.015 | | R | | 5103-71-9 | alpha-Chlordane | 0.010 | | • • | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.075 | 4 | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.021 | | | | 5103-73-1 | cis-Nonachlor | 0.021 | | | | 50-29-3 | 4,4' DDT | 0.017 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO SDG: Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet Dilution Factor: 1.0 Lab Sample ID: 201648 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/13/94 Sulfur Clean-up: NO Client ID No. K40396W 40219 | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|-----| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | , | | 118-74-1 | Hexachiorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | U | | | 309-00-2 | Aldrin | 0.050 | 7 | | | 1024-57-3 | Heptachler-Epoxide |
0.045 | | R | | 5103-74-2 | gamma Chlordane | 0.022 | | R | | 5103-71-9 | alpha-Chlordane | 0.014 | | `` | | 39765-80-5 | trans-Nonachlor | 0.0050 | U | | | 72-55-9 | 4,4'-DDE | 0.088 | 4 | } | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.038 | | | | 5103-73-1 | cis-Nonachlor | 0.026 | | | | 50-29-3 | 4,4'-DDT | 0.022 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | U | · ` | | 8001-35-2 | Toxaphene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40397W 40219 Phase Type: Biota Phase Weight: 10.0 g Extraction: Soxhlet 1.0 Dilution Factor: Lab Sample ID: 201649 Date Received: 10/16/94 Date Extracted: 04/13/94 Date Analyzed: 05/19/94 Sulfur Clean-up: YES SDG: | | | | | | _ | |---|--------------------|--------------------|-----------------------|-------------|----| | | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | Q | | | ļ | 2052-07-5 | 2-Bromobiphenyl | 0.010 | υ | | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | U | | | Γ | 92-66-0 | 4-Bromobiphenyl | 0.010 | U | | | | 118-74-1 | Hexachlorobenzene | 0.0050 | Ū | | | | 58-89-9 | gamma-BHC | 0.0050 | U | l | | Г | 309-00-2 | Aldrin | 0.025 | 7 | | | | 1024-57-3 | Heptachlor Epoxide | 0.016 | | ł | | | 5103-74-2 | gamma-Chlordane | 0.0096 | | R | | | 5103-71-9 | alpha-Chlordane | 0.0087 | | | | F | 30765-80-5 | trans Nonachier | 0.0099 | | LR | | | 72-55-9 | 4,4'-DDE | 0.043 | J | Ì | | | 60-57-1 | Dieldrin | 0.010 | U | | | Г | 72-54-8 | 4,4'-DDD | 0.014 | | | | | 5103-73-1 | cis-Nonachlor | 0.012 | | 1 | | | 50 29 3 | 4,4' DDT | 0.010 | | 1 | | | 36355-01-8 | Hexabromobiphenyl | 0.020 | Ü | ' | | | 8001-35-2 | Toxanhene | 0.20 | U | | Lab Name: Aquatec, Inc. Lab Code: AQUAI Contract: 91082 Case: BIO Client ID No. K40398W 40219 Phase Type: Biota Phase Weight: 10.0 g Lab Sample ID: ____ Date Received: ____ Date Extracted: 201650 10/16/94 04/13/94 05/19/94 Extraction: Soxhlet Dilution Factor: 1.0 Date Analyzed: 05/19/8 Sulfur Clean-up: YES SDG: | CAS NO. | COMPOUND | CONCENTRATION (mg/Kg) | a | | |------------|--------------------|-----------------------|---|---| | 2052-07-5 | 2-Bromobiphenyl | 0.010 | U | | | 2113-57-7 | 3-Bromobiphenyl | 0.010 | Ü | | | 92-66-0 | 4-Bromobiphenyl | 0.010 | υ | | | 118-74-1 | Hexachlorobenzene | 0.0050 | U | | | 58-89-9 | gamma-BHC | 0.0050 | Ū | | | 309-00-2 | Aldrin | 0.040 | J | | | 1024-57-3 | Heptachlor Epoxide | 0.025 | | | | 5103-74-2 | gamma Chlordane | 0.016 | | R | | 5103-71-9 | alpha-Chlordane | 0.013 | | | | 30765-80-5 | trans Nonschier | 0.014 | | R | | 72-55-9 | 4,4'-DDE | 0.059 | 7 | | | 60-57-1 | Dieldrin | 0.010 | U | | | 72-54-8 | 4,4'-DDD | 0.021 | | | | 5103-73-1 | cis-Nonachlor | 0.017 | J | | | 50-29-3 | 4,4' DDT | 0.014 | | R | | 36355-01-8 | Hexabromobiphenyl | 0.020 | υ | | | 8001-35-2 | Toxaphene | 0.20 | U | | | | | | | | ### MERCURY ANALYSES #### <u>Introduction</u> Analyses were performed according to USEPA CLP SOW ILM03.0. The data validation process is intended to evaluate the data on a technical basis rather than a contract compliance basis. It is assumed that the data package represents the best efforts of the laboratory and had already been subjected to adequate and sufficient quality review prior to submission for validation. During the validation process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this valuation, qualifier codes may be added, deleted, or modified by the data validator. Validator qualified results are annotated with the following codes in accordance with National Functional Guidelines: ### Concentration (C) qualifiers: - U The analyte was analyzed for but not detected. The associated value is the instrument detection limit. - B The reported value was obtained from a reading less than the contract required detection limit (CRDL) but greater than or equal to the instrument detection limit (IDL). ### Quantitation (Q) qualifiers: - E The reported value is estimated due to the presence of interference. - M Duplicate injection precision not met. - N Spiked sample recovery not within control limits. - S Reported value was determined by the method of standard additions (MSA). - W Post-digestion spike for Furnace-AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance. - * Duplicate analysis not within control limits. - + Correlation coefficient for MSA is less than 0.995. #### Validation qualifiers: - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only. - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection. - R The sample results are rejected. Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant QC problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC test, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error. #### **Data Assessment** ### 1. Holding Time The recommended holding times for mercury analyses is 28 days from tissue homogenization. All samples were analyzed within this holding time. ### 2. Blank Contamination Quality assurance blanks, i.e., preparation and calibration blanks, are prepared to identify any contamination which may have been introduced into the samples during sample preparation or analysis. Preparation blanks measure laboratory contamination during preparation. Calibration blanks measure instrument contamination and sample cross-contamination. All calibration and preparation blanks were found to be acceptable, with no analytes detected above the CRQL. #### 3. Calibration Satisfactory instrument calibration is established to insure that the instrument is capable of producing acceptable quantitative data. An initial calibration demonstrates that the instrument is capable of giving acceptable performance at the beginning of an experimental sequence. The continuing calibration verifies that the instrument is giving satisfactory daily performance. #### 3.1 Initial Calibration The correlation coefficient of the initial calibration was greater than the minimum required 0.995. #### 3.2 Continuing Calibration All continuing calibration verification standards were acceptable. #### 3.3 CRDL Standard All CRDL standard recoveries were within acceptable limits. ### 4. Matrix Spike/Laboratory Duplicate Matrix spike and laboratory duplicate data are used to assess the precision and accuracy of the analytical method. ### 4.1 Matrix spike Recovery for the matrix spike was within acceptable limits. ### 4.2 Laboratory Duplicate The difference between laboratory duplicates was within acceptable limits. 5. Laboratory Control Sample (LCS) All recoveries were within the acceptable recovery limits. 6. Serial Dilution No ICP analyses were performed, therefore no serial dilution was necessary. 7. Furnace QC No furnace analyses were performed. 8. Method of Standard Additions (MSA) No MSA were performed. 9. System Performance and Overall Assessment Overall system performance was acceptable. Other than those deviation specifically mentioned in this review, the overall data quality is within the guidelines specified in the method. **Data Validation Checksheets** | | YES | NO | NA | |--|----------|-------------|-------------| | Data Completeness and Deliverables | | | | | Is there a narrative or cover letter present? | X | | | | Are the sample numbers included in the narrative? | X | | | | Are the sample chain-of-custodies present? | X | | | | Do the chain-of-custodies indicate any problems with sample receipt or sample condition? | | X | | | Form I to IX | | | | | Are all the Form I through Form IX labeled with: | | | | | Laboratory name? | <u> </u> | | | | Sample No.? | X | | | | SDG No.? | X | | | | Correct units? | X | | | | Matrix? | X | | | | Raw Data | | | | | Is the digestion log for flame AA/ICP present? | | | X | | Is the digestion log for furnace AA present? | | | X | | Is the distillation log for mercury present? | X | | | | Is the distillation log for cyanides present? | | | X | | Are preparation dates present on sample preparation logs/bench sheets? | X | | | | Are the measurement read out records present for: | | | | | ICP | | | X | | Flame AA | | | X | | Furnace AA | | | X | | Mercury | X | | | | Cyanides | | | X | | Is the data legible? | X | | | | Is the data properly labeled? | X | | | | Holding Times | | | | | Were mercury analyses performed within 28 days? | <u> </u> | | | | | YES | NO | NA | |---|------------|-------------|----| | Were cyanide distillations performed within 14 days? | | | X | | Were other metal analysis performed within 6 months? | | | X | | Form I (Final Data) | | | | | Are all forms complete? | X | | | | Are correct units indicated on Form I's? | X . | | | | Are all "less than IDL" values properly coded with "U"? | X | | | | Are the correct concentration qualifiers used with final data? | X | | | | Was a brief physical description of samples given on Form I's? | | X . | | | Calibration | | | | | Is a record of at least 2 point calibration present for ICP analysis? | | | X | | Is a record of 5 point calibration present for Hg analysis? | X | | | | Is a record of 4 point calibration present for: | | | | | Flame AA? | | | X | | Furnace AA? | | | X | | Cyanides? | | | X
 | Is one calibration standard at the CRDL level for all AA (except Hg) and cyanides analyses? | | | X | | Is correlation coefficient less than .995 for: | | | | | Mercury Analysis? | <u> x</u> | | | | Cyanide Analysis? | | | X | | Atomic Absorption Analysis? | | | X | | Form II A (Initial and Continuing Calibration Verifica | ation) | - | _ | | Present and complete for every metal and cyanide? | X | | | | Are all calibration standards (initial and continuing) within control limits for: | | | | | Metals (90-110 %R)? | | | X | | Hg (80-120 %R)? | X | | | | Cyanides (85-115 %R)? | | | X | | | YES | NO | NA | |--|-------------|-------------|----| | Was continuing calibration performed every 10 samples or every 2 hours? | X | | | | Was the ICV for cyanides distilled? | | | X | | Form II B (CRDL Standards for AA and ICP) | | | | | Was a CRDL standard (CRA) analyzed after initial calibration for all AA metals (except Hg)? | | | × | | Was a mid-range calibration verification standard distilled and analyzed for cyanide analysis? | | | X | | Was a 2xCRDL (or 2xIDL when IDL>CRDL) analyzed (CRI) for each ICP run? | | | X | | Was CRI analyzed after ICV/ICB and before the final CCV/CCB, and twice every eight hours of ICP run? | | | X | | Are CRA and CRI standards within control limits for metals (60-120 %R)? | X | | | | Is mid-range standard within control limits for cyanide (80-120 %R) | | | Х | | Form III (Initial and Continuing Calibration Blanks) | | | | | Present and complete? | X | | | | Was an initial calibration blank analyzed? | X | | | | Was a continuing calibration blank analyzed after every 10 samples or every 2 hours (which ever is more frequent)? | X | | | | Are all calibration blanks (when IDL <crdl) (crdls)?<="" contract="" detection="" equal="" less="" limits="" or="" required="" td="" than="" the="" to=""><td>X</td><td></td><td></td></crdl)> | X | | | | Are all calibration blanks less than two times Instrument Detection Limit (when IDL>CRDL)? | | | Х | | Form III (Preparation Blank) | | | | | Was one prep. blank analyzed for: | | | | | each Sample Delivery Group SDG)? | X | | | | each batch of digested samples? | X | | | | each matrix type? | X | | | | Is concentration of prep. blank value greater than the CRDL when IDL is less than or equal to CRDL? | | X | | | | YES | NO | NA | |--|---------------------------------------|---------|-------------| | If yes, is the concentration of the sample with the least concentrated analyte less than 10 times the prep. blank? | | | × | | is concentration of prep. blank value less than two times IDL, when IDL is greater than CRDL? | | | × | | Is concentration of prep. blank below the negative CRDL? | | X | | | Form IV (ICP Interference Check Sample) | , . | | | | Present and complete? | | | X | | Was ICS analyzed at beginning and end of run (or at least twice every 8 hours)? | | | X | | Are all Interference Check Sample results inside the control limits (±20%)? | | | X | | If no, is concentration of AI, Ca, Fe, or Mg lower than the respective concentration in ICS? | | | X | | Form V A (Spiked Sample Recovery - Pre-Digestion/F | Pre-Distil | lation) | | | Present and complete for: | | | | | each SDG? | X | | | | each matrix type? | X | | | | Was field blank used for spiked sample? | | X | | | Are all recoveries within control limits (75-125)? | X | | | | If no, is sample concentration greater than or equal to four times spike concentration? | | <u></u> | X | | Are results outside the control limits (75-125%) flagged with "N" on Form I's and Form VA? | · · · · · · · · · · · · · · · · · · · | | X | | Are any spike recoveries: | | | | | less than 10%? | | X | | | between 10-74%? | | X | | | between 126-200%? | | X | | | greater than 200%? | | X | | | Form VI (Lab Duplicates) | | . —— | | | Present and complete for: | | ٠ | | | each SDG? | X | | | | · | YES | NO | NA | |---|-----|-------------|-------------| | each matrix type? | X | | | | Was field blank used for duplicate analysis? | | X | | | Are all values within control limits (RPD 20% or difference ≤ ±CRDL)? | X | | | | If no, are all results outside the control limits flagged with an * on Form I's and VI? | | | X | | Is any RPD (where sample and duplicate are both greater than or equal to 5 times CRDL) > 100%? | | | X | | Is any difference between sample and duplicate (where sample and/or duplicate is less than 5xCRDL) > 2xCRDL? | | X | | | Form VII (Laboratory Control Sample) | | · | | | Was one LCS prepared and analyzed for: | | | | | each SDG? | X | | | | each batch samples digested/distilled? | X | | | | Is LLCS "Found" value higher than the control limits on Form VII? | | X | | | Is LCS "Found" lower than the control limits on Form VII? | | X | | | Form IX (ICP Serial Dilution) | | | | | Was Serial Dilution analysis performed for: | | | | | each SDG? | | | X | | each matrix type? | | | X | | Was field blank(s) used for Serial Dilution Analysis? | | | X | | Are results outside control limit flagged with an "E""
on Form I's and Form IX when initial concentration on
Form IX is equal to 50 times IDL or greater. | | | X | | Are any % difference values: | | | | | > 10%? | | | X | | ≥100%? | | | X | | Furnace Atomic Absorption (AA) QC Analysis | | | | | Are duplicate injections present in furnace raw data (except during full Method of Standard Addition) for each sample analyzed be GFAA? | | | , X | | | YES | NO | NA | |--|----------|-------------|---------| | Do the duplicate injection readings agree within 20% Relative Standard Deviation (RSD) or coefficient of Variation (CV) for concentration greater than CRDL? | | | | | Was a dilution analyzed for sample with analytical spike recovery less than 40%? | | | X | | Is analytical spike recovery outside the control limits (85-115%) for any sample? | | | X | | Form VIII (Method of Standard Addition Results) | | | | | Present? | | X | | | If no, is any Form I result coded with "S" or a "+"? | | X | | | Is coefficient of correlation for MSA less than 0.990 for any sample? | | | Х | | Was MSA required for any sample but not performed? | | X | | | Is coefficient of correlation for MSA less than 0.995? | | | X | | Are MSA calculations outside the linear range of the calibration curve generated at the beginning of the analytical run? | | · | X | | Was proper quantitation procedure followed as outlined in the SOW on page E-23? | | | × | | Field Blank | | | | | Is field blank concentration less than CRDL (or 2 x IDL when IDL > CRDL) for all parameters of associated aqueous and soil samples? | | | X | | If no, was field blank value already rejected due to other QC criteria? | | | Х | | Form X, XI, XII (Verification of Instrumental Paramet | ers) | | | | Is verification report present for: | | | | | Instrument Detection Limits (quarterly)? | X | | | | ICP Interelement Correlation Factors (annually)? | | | X | | ICP Linear Ranges (quarterly)? | | | X | | Form X (Instrument Detection Limits) | | | | | Are IDLs present for: | | | | | all the analytes? | <u>X</u> | | <u></u> | | all the instruments used? | X | | | | | YES | NO | NA | |---|-----|-------------|-------------| | Is IDL greater than CRDL for any analyte? | | <u> </u> | | | If yes, is the concentration of Form I of the sample analyzed on the instrument whose IDL exceeds CRDL, | | | X | | greater than 5 x IDL. | | | | | Was any sample result higher linear range of ICP. | | | | | Was any sample result higher than the highest calibration standard for non-ICP parameters? | | X | | | If yes for any of the above, was the sample diluted to | | | Χ | | obtain the result on Form !? | | | | Corrected Sample Analysis Data Sheets ## 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | / Name: AQU | ATEC | | Contract: 9 | 10 | B 2 | K40114W |
--|------------------------|----------------------|--|-----|-------------|-----------------| | The second of th | | | | | | SDG No.: 40219 | | atrix (soil/ | water): FISH | <u>_</u> | | L | ab Samp | le ID: 196335 | | vel (low/me | d): LOW_ | _ | | Da | ate Rec | eived: 09/03/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dry | 7 1 | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7400 00 5 | | | - | | सक | | | 7429-90-5 | Aluminum_ | | - | | NR
NR | | | 7440-36-0
7440-38-2 | Antimony_
Arsenic | | - | | NR NR | | | | Barium | | _ | | NR NR | | • | | Beryllium | | - | | NR | | | | Cadmium | | _ | | NR | | | | Calcium | | 1 | | NR | | | | Chromium | | - | | NR | | | 7440-48-4 | | | - | | NR | | | | Copper | | 1 | · | NR | | | | Iron | | • | | NR | | | 7439-92-1 | Lead | | _ | | NR | | | 7439-95-4 | Magnesium | | _ | | NR | | | | Manganese | | - | | NR | | | | Mercury | 0.02 | - | | [cv] | | | | Nickel | ************************************** | _ | | NR | | | 7440-09-7 | Potassium | | _ | | NR | | | 7782-49-2 | Selenium | | _ | | NR | | | 7440-22-4 | Silver - | | _ | | NR | | | 7440-23-5 | Sodium | | _ | | NR | | | 7440-28-0 | Thallium | | _ | | NR | | | 7440-62-2 | Vanadium - | | - | | NR | | | 7440-66-6 | Zinc | | | | NR | | | | Cyanide | | 1 | | NR | | lor Before: | | Clarit | y Before: | | · | Texture: | | lor After: | | Clarit | y After: | | _ | Artifacts: | | mments: | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 9 | 108 | 2 | K40115W | | |--------------|--------------|------------|-----------------|----------|---------------|----------------|--| | b Code: AQU | AI_ Ca | se No.: BI | O SAS No. | : _ | , | SDG No.: 40219 | | | trix (soil/ | water): FISH | _ | | La | b Sampl | e ID: 196336 | | | vel (low/med | d): Low_ | _ | | Da | te Rece | ived: 09/03/93 | | | Solids: | 100. | 0 | | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | | | Γ | | | | | | | | CAS No. | Analyte | Concentration | C | Q | M | | | | 7429-90-5 | Aluminum | | - | | NR | | | | | Antimony - | | - | | NR | | | | 7440-38-2 | Arsenic - | | | | nr | | | | | Barium | | - | | NR | | | | 7440-41-7 | Beryllium | | | | NR | | | | | Cadmium_ | | | | NR | | | | _ | Calcium_ | | | | NR | | | | | Chromium_ | | _ | | NR | | | | | Cobalt | | _ | | NR | | | | | Copper | | _ | | NR | | | | | Iron | | _ | | NR | | | | · · | Lead | | | | NR | | | | | Magnesium | | l-I | | NR | | | | | Manganese | | ൄ | | NR | | | | | Mercury | 0.02 | B | | CV | | | | | Nickel | | - | | NR | | | | | Potassium | | _ | | NR | | | | | Selenium_ | | _ | | NR | | | | | Silver | | _ | | NR | | | | 7440-23-5 | | | _ | | NR | | | | _ | Thallium | | _ | | NR | | | | 7440-62-2 | Vanadium_ | | _ | | NR | | | | 7440-66-6 | Zinc | | | | NR | | | | | Cyanide | | - | | NR | | | or Before: | | Clarit | y Before: | | • | Texture: | | | or After: | | Clarit | y After: | | _ | Artifacts: | | | ments: | | | | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN ### INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Lab Sample ID: 196337 Date Received: 09/03/93 g/kg dry weight): MG/KG cration C Q M NR | |--| | Date Received: 09/03/93 g/kg dry weight): MG/KG cration C Q M NR | | g/kg dry weight): MG/KG cration C Q M NR | | tration C Q M NR | | tration C Q M NR | | NR N | | NR N | | NR N | | NR N | | NR N | | NR | | NR NR NR NR NR | | NR NR NR | | NR NR | | NR NR | | | | NR NR | | NR NR | | NR NR | | NR NR | | NR NR | | 0.01 B CV | | NR | | NR e: Texture: | | : Artifacts: | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AOU | ATEC | | Contract: 9 | 108 | 32 | K40117W | |--------------|------------------------|---------------|-----------------|-----|-------------|----------------| | | | | | | | SDG No.: 40219 | | | -
water): FISH | | | | | e ID: 196338 | | evel (low/me | d): LOW_ | | | Da | te Rece | ived: 09/03/93 | | Solids: | 100. | 0 | | | | | | Ce | oncentration | Units (ug | /L or mg/kg dry | y w | weight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | Aluminum | | - | | NR | | | 7440-36-0 | Antimony_ | | - | | NR . | | | 7440-38-2 | Arsenic | | - | | NR | | | | Barium | | - | | NR | | | 7440-41-7 | | | - | | NR | | | 7440-43-9 | | | | | NR | | | 7440-70-2 | Calcium | | 1_1 | | NR | | | 7440-47-3 | Chromium | | | | NR | | | | Cobalt | | [_[| | NR | | | 7440-50-8 | Copper | | | | NR | | | 7439-89-6 | Iron | | _ | | NR | | | | Lead | | | | NR | | | | Magnesium | | _ | | NR | | _ | | Manganese | | _ | | NR | | | | Mercury_ | 0.02 | _ | | CV | | | 7440-02-0 | | | _ | | NR | | | 7440-09-7 | | | - | | NR | | • | 7782-49-2 | | | - | | NR | | | 7440-22-4
7440-23-5 | Sodium Sodium | | - | | NR
NR | | | 7440-23-5 | | | - | | NR NR | | | 7440-28-0 | Vanadium | | - | | NR NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | | | NR | | lor Before: | | Clarit | y Before: | | | !
Texture: | | lor After: | | | y After: | | | Artifacts: | | mments: | | | | | | | # INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUATEC Co Lab Code: AQUAI Case No.: BIO Matrix (soil/water): FISH_ Level (low/med): LOW Solids: 100.0 Concentration Units (ug/L or Analyte o | SAS No.: SDG No.: 40219 Lab Sample ID: 201638 Date Received: 10/16/93 mg/kg dry weight): MG/KG | |--|---| | CAS No. Analyte Concentration Units (ug/L or 7429-90-5 Aluminum Antimony Arsenic Barium | Date Received:
10/16/93 mg/kg dry weight): MG/KG | | CAS No. Analyte Concentration Units (ug/L or 7429-90-5 Aluminum Antimony Arsenic Barium | mg/kg dry weight): MG/KG | | CAS No. Analyte Concentration Units (ug/L or Ana | | | CAS No. Analyte Conc. 7429-90-5 Aluminum Antimony Arsenic Barium | | | 7429-90-5
7440-36-0
7440-38-2
7440-39-3 Barium | entration C O M | | 7440-36-0 Antimony Arsenic Barium | Seriet actour C X In | | 7440-36-0 Antimony Arsenic Barium | | | 7440-38-2 Arsenic 7440-39-3 Barium | NR NR | | 7440-39-3 Barium | NR NR | | | NR NR | | | NR NR | | 7440-41-7 Beryllium | NR NR | | 7440-43-9 Cadmium | NR NR | | 7440-70-2 Calcium | NR NR | | 7440-47-3 Chromium | NR NR | | 7440-48-4 Cobalt | NR NR | | 7440-50-8 Copper | NR NR | | 7439-89-6 Iron | NR NR | | 7439-92-1 Lead | NR NR | | 7439-95-4 Magnesium | NR NR | | 7439-96-5 Manganese | NR NR | | 7439-97-6 Mercury | 0.03 B CV | | 7440-02-0 Nickel | NR NR | | 7440-09-7 Potassium | NR NR | | 7782-49-2 Selenium_ | NR NR | | 7440-22-4 Silver | NR NR | | 7440-23-5 Sodium | NR NR | | 7440-28-0 Thallium | NR | | 7440-62-2 Vanadium | NR | | 7440-66-6 Zinc | NR NR | | Cyanide | NR NR | | | | | lor Before: Clarity Be | fore: Texture: | | lor After: Clarity Af | ter: Artifacts: | | mments: | | | | | | | | FORM I - IN ## 1 EPA SAMPLE NO. | | | INORGANIC . | ANALYSES DATA S | SHEET | 1 | |-----------------------|------------------------|------------------|-----------------|-------------|-----------------| | . Name: AQUA | K40382W | | | | | | | | SDG No.: 40219 | | | | | Dan Code. ngor | | JC 1.01. D1 | - OAD NOT | | | | Matrix (soil/w | water): FISH | - | | Lab Samp | ole ID: 201639 | | Level (low/med | l): LOW_ | - | | Date Rec | eived: 10/16/93 | | <pre>\$ Solids:</pre> | 100. | 0 | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | weight) | : MG/KG | | | CAS No. | Analyte | Concentration | CQ | M | | | 7429-90-5 | Aluminum | | - | NR | | | 7440-36-0 | Antimony_ | | | NR | | | 7440-38-2 | Arsenic | | | NR | | | 7440-39-3 | Barium | | _ | NR | | | 7440-41-7 | | | _ | NR | | | 7440-43-9 | | | _ | NR
NR | | | 7440-70-2
7440-47-3 | Calcium Chromium | | | NR NR | | | 7440-48-4 | Cobalt | | _ | NR | | | 7440-50-8 | Copper | | | NR | | | 7439-89-6 | Iron | | | NR | | | 7439-92-1 | Lead | | - | NR | | | | Magnesium | | | NR | | \sim | 7439-96-5 | Manganese | | - | NR | | | | Mercury | 0.03 | - | cv | | | 7440-02-0 | Nickel T | | - | NR | | | 7440-09-7 | Potassium | | | NR | | , | 7782-49-2 | Selenium_ | | | NR | | | 7440-22-4 | Silver | | _ | NR | | | 7440-23-5 | Sodium | | _ | NR | | • | 7440-28-0 | | | | NR | | | | Vanadium_ | | | NR | | | 7440-66-6 | Zinc
Cyanide | | _ - | NR NR | | | | Claurae_ | | _ | - | | Color Before: | | Clarit | y Before: | | Texture: | | Color After: | | Clarit | y After: | | Artifacts: | | Comments: | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUATEC | | | Contract: 91082 | | | K40383W | |---------------|------------------------|-------------------|-----------------|---|-------------|-----------------| | | | | | | | SDG No.: 40219 | | atrix (soil/ | water): FISH | <u>_</u> | | Lā | ab Sampl | le ID: 201640 | | evel (low/med | i): LOW_ | - | | Da | ate Rece | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y v | weight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | | | | _ | | | | | 7429-90-5 | Aluminum_ | | | | NR | | | 7440-36-0 | Antimony_ | | _ | | NR | | , | 7440-38-2 | Arsenic | | _ | | NR | | | 7440-39-3 | Barium | | | | NR | | | 7440-41-7 | Beryllium | | | | NR | | | 7440-43-9 | | | _ | | NR | | | 7440-70-2 | | | _ | | NR | | | 7440-47-3
7440-48-4 | | | - | | NR | | | | | | - | | NR | | | | Copper | | - | | NR | | | | Iron | | - | | NR NR | | | | | | - | | NR NR | | | 7439-95-4 | | | - | | NR NR | | | | Manganese | 0.02 | - | | CV | | • | 7440-02-0 | Mercury_ | 0.02 | | | NR | | | 7440-02-0 | | | - | | NR NR | | | 7782-49-2 | | | - | | NR | | | 7440-22-4 | | | - | | NR NR | | | | Sodium | | - | | NR | | | 7440-23-3 | Thallium | | - | | NR | | | 7440-28-0 | Vanadium Vanadium | | - | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | 7440 00 0 | Cyanide | | - | | NR | | | | | | | | | | lor Before: | | Clarit | y Before: | <u>ø; </u> | _ | Texture: | | lor After: | | Clarit | y After: | | - | Artifacts: | | mments: | | | | | | | FORM I - IN #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQUA | ATEC | | Contract: 9: | 108 | 32 | K40384W | |----------------|---|--|-----------------|-----|----------|---| | Lab Code: AQUI | AI_ Ca | se No.: BI | O SAS No.: | : _ | | SDG No.: 40219_ | | Matrix (soil/v | water): FISH | ·
 | | La | ab Sampl | e ID: 201641 | | Level (low/med | i): Low_ | _ | | Da | te Rece | ived: 10/16/93 | | % Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | y v | weight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | M | | | 7440-41-7
7440-43-9
7440-70-2
7440-47-3
7440-48-4
7440-50-8
7439-89-6
7439-92-1
7439-95-4
7439-96-5
7439-97-6
7440-02-0
7440-09-7
7782-49-2
7440-23-5 | Aluminum_Antimony_Arsenic_Barium_Beryllium_Cadmium_Calcium_Chromium_Cobalt_Copper_Iron_Lead_Magnesium_Manganese_Mercury_Nickel_Potassium_Selenium_Silver_Sodium_Thallium_Vanadium_Zinc_Cyanide_Cyanide_Comparic_Co | 0.02 | | | NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
NR
N | | Color Before: | | Clarit | y Before: | | | Texture: | | Color After: | | Clarit | y After: | | _ | Artifacts: | | Comments: | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | | Contract: 91 | 108: | 2 | K40385W
 |--------------|--------------|--------------|-----------------|----------|-------------|-----------------| | | | | | | | SDG No.: 40219 | | | | | | _ | | | | trix (soll/ | water): FISH | _ | | La | o Samp. | le ID: 201642 | | vel (low/med | i): LOW_ | _ | | Da | te Rec | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | oncentration | Units (ug | /L or mg/kg dry | , w | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | | Q | м | | | CAS NO. | MIGTACE | concentration | | Q | M | | | | Aluminum | | - - | | NR | | | | Antimony | | _ - | | NR | | | 7440-38-2 | Arsenic - | | <u> </u> | | NR | | | 7440-39-3 | Barium | | | | NR | | | | Beryllium | | | | NR | | | | Cadmium | | | | NR | | | · · | Calcium_ | | | | NR | | | 7440-47-3 | Chromium | | | | NR | | | • | Cobalt | | | | NR | | | 7440-50-8 | Copper | | | | NR | | | 7439-89-6 | Iron | | | | NR | | | | Lead | | | | NR | | | 7439-95-4 | Magnesium | | | | NR | | - | | Manganese | | | | NR | | | 7439-97-6 | Mercury | 0.03 | | | CV | | | 7440-02-0 | Nickel | | | | NR | | | | Potassium | | | | NR | | | 7782-49-2 | Selenium | | - - | | NR . | | | 7440-22-4 | Silver - | | _ - | | NR | | | 7440-23-5 | Sodium | | _ - | | NR | | | 7440-28-0 | Thallium | | _ - | | NR | | | 7440-62-2 | Vanadium - | | -1- | | NR | | | 7440-66-6 | Zinc | | _ - | | NR | | | | Cyanide | | | | NR | | | | | | _ - | | | | lor Before: | | Clarit | y Before: | 4 | | Texture: | | lor After: | | Clarit | y After: | _ | | Artifacts: | | mments: | | • | | | | | FORM I - IN ### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ✓ Name: AQUA | ATEC | | Contract: 9 | 108 | 32 | K40386W | |----------------|---|--|-----------------|----------|-----------|-----------------| | Lab Code: AQUA | I_ Ca | se No.: BI | O SAS No. | : _ | | SDG No.: 40219_ | | Matrix (soil/w | water): FISH | _ | | La | ab Sample | ⊇ ID: 201643 | | Level (low/med | l): LOW_ | _ | | Da | te Recei | ived: 10/16/93 | | % Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y w | weight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q I | <u> </u> | | | 7440-38-2
7440-39-3
7440-41-7
7440-43-9
7440-70-2
7440-47-3
7440-48-4
7440-50-8
7439-89-6
7439-95-4
7439-96-5
7439-96-5
7439-97-6
7440-02-0
7440-09-7
7782-49-2
7440-23-5
7440-28-0
7440-62-2 | Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Mercury Nickel Potassium Selenium Silver Sodium | 0.02 | | | | | Color Before: | | Clarit | y Before: | <u>«</u> | _ : | Texture: | | Color After: | | Clarit | y After: | | _ 1 | Artifacts: | | Comments: | | | | | | | FORM I - IN ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | b Name: AQUA | TEC | | Contract: 9 | 1082_ | | K40392W | |----------------|------------------------|----------------------|--|--|------------------|----------------| | Lab Code: AQUA | I_ Ca | se No.: BI | SAS No. | : | | SDG No.: 40219 | | Matrix (soil/w | _ | | | | | e ID: 201644 | | Level (low/med |): LOW | | | Date | Rece | ived: 10/16/93 | | % Solids: | 100. | _ | | | | | | • | | | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y wei | ght): | MG/KG | | | CAC No | 33-4- | | | | | | | CAS No. | Analyte | Concentration | | δ ₁ | M | | | 7429-90-5 | Aluminum | | - | | NR | | • | 7440-36-0 | Antimony_ | | | | NR | | | 7440-38-2 | Arsenic | | _ _ | | NR | | | 7440-39-3 | Barium_ | | _ <u></u> | | NR | | | 7440-41-7
7440-43-9 | Beryllium
Cadmium | | - | | NR I | | | 7440-70-2 | | | - | | NR
NR | | | 7440-47-3 | Chromium | | | | NR | | | 7440-48-4 | Cobalt | | - | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | - | | NR | | | 7439-92-1 | Lead | | - | | NR | | | 7439-95-4 | Magnesium | | - | | NR | | | 7439-96-5 | Manganese | | - | | NR | | | 7439-97-6 | Mercury | 0.02 | B | | CV | | | 7440-02-0 | Nickel - | | | | NR | | į | 7440-09-7 | Potassium | | - | | NR | | | 7782-49-2 | Selenium | | - | | NR | | | 7440-22-4 | Silver - | | - | | NR | | İ | 7440-23-5 | Sodium | | | | NR | | | 7440-28-0 | Thallium | | | | NR | | Į. | 7440-62-2 | Vanadium_ | | | | NR | | [| 7440-66-6 | Zinc | | | | NR | | ļ | | Cyanide | | _ _ | | NR | | ļ | | | | l l | | l | | Color Before: | | Clarit | y Before: | <u>. </u> | • | Texture: | | Color After: | | Clarit | y After: | | • | Artifacts: | | Comments: | | | | | | | | | | | ······································ | | | | FORM I - IN ### INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | _ıb Name: AQU? | ATEC | | Contract: 9: | 1082 | | K40393W | |----------------|-------------|-------------|-----------------|------|-------|-----------------| | | | | | | | SDG No.: 40219 | | Matrix (soil/v | | | | | | le ID: 201645 | | | | _ | | | | | | Level (low/med | i): row_ | _ | | Dat | e Rec | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y we | ight) | : MG/KG | | | CAS No. | 31 | G | | | T., I | | | CAS NO. | Analyte | Concentration | | Q | M | | | 7429-90-5 | Aluminum | | - - | | NR | | | 7440-36-0 | Antimony_ | | - - | - | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium — | | - - | | NR | | | 7440-41-7 | Beryllium | | - - | | NR | | | 7440-43-9 | Cadmium | | - - | | NR | | | 7440-70-2 | Calcium | | | | NR | | | 7440-47-3 | Chromium | | | | NR | | | 7440-48-4 | Cobalt | | | | NR | | | 7440-50-8 | Copper | | - - | | NR | | | 7439-89-6 | Iron | | | | NR | | | 7439-92-1 | Lead | | | | NR | | | 7439-95-4 | Magnesium | | | | NR | | | 7439-96-5 | Manganese | | | | NR | | | 7439-97-6 | Mercury | 0.02 | B | | CV | | | 7440-02-0 | Nickel | | | | NR | | | 7440-09-7 | Potassium | | | | NR | | • | 7782-49-2 | Selenium_ | | | | NR | | | 7440-22-4 | Silver | | _ _ | | NR | | | 7440-23-5 | Sodium | | | | NR | | | 7440-28-0 | Thallium_ | | | | NR | | | 7440-62-2 | Vanadium_ | | _ _ | | NR | | | 7440-66-6 | Zinc | | _ _ | | NR | | | | Cyanide | | - - | | NR | | | i | ! | | _ _ | | 1 | | olor Before: | | Clarit | y Before: | 6 | | Texture: | | olor After: | | Clarit | y After: | | | Artifacts: | | omments: | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN ### 1 INORGANIC ANALYSES DATA SHEET | EPA | SAMPLE | NO. | |-----|--------|-----| |-----|--------|-----| | ಮ Name: AQUA | TEC | | Contract: 9: | 108 | 2 | K40394W | |--------------|--------------|------------------|-----------------|-----|---------------|-----------------| | | | | | | | SDG No.: 40219 | | trix (soil/w | water): FISH | <u>.</u> | | La | b Samp | le ID: 201646 | | vel (low/med | l): LOW_ | | | Da | te Rece | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | | ļ. <u> </u> | | _ . | | | | | 7429-90-5 | Aluminum | | _ . | | NR | | | 7440-36-0 | Antimony_ | | _ . | | NR | | | 7440-38-2 | Arsenic | | _ . | | NR | | | | Barium Beryllium | | - - | | NR NR | | | 7440-41-7 | | | - - | | NR
NR | | | | Calcium | | - - | | NR NR | | | | Chromium | | - - | , | NR NR | | | | Cobalt | | - - | | NR | | | | Copper | | - - | | NR | | | | Iron | | - - | | NR | | | | Lead | | -1 | | NR | | | 1 | Magnesium | | - - | | NR | | • | | Manganese | | - : | | NR | | | | Mercury | 0.02 | | | cv | | | | Nickel - | | -1- | | NR | | | 7440-09-7 | | | - - | | NR | | • | | Selenium | | - - | | NR | | | | Silver | | - - | | NR | | | | Sodium | | -1- | | NR | | | | Thallium | | -1. | | NR | | | 7440-62-2 | Vanadium - | | -1 | | NR | | | 7440-66-6 | Zinc | | -1. | | NR | | | | Cyanide | | | | NR | | | l | | | _1. | | lI | | lor Before: | | Clarit | y Before: | 65 | | Texture: | | lor After: | | Clarit | y After: | | | Artifacts: | | mments: | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | → D Name: AQUATEC | | Contract: 9: | 1082 | K40395W | |---------------------------|----------------------|-----------------|------------|-----------------| | Lab Code: AQUAI_ Ca | se No.: BI | OSAS No.: | . | SDG No.: 40219_ | | Matrix (soil/water): FISH | <u>.</u> | | Lab Samp | le ID: 201647 | | Level (low/med): LOW_ | | | Date Rece | eived: 10/16/93 | | | 0 | | | | | | | /L or mg/kg dry | y weight): | MG/KG | | CAS No. | Analyte | Concentration | C Q | M | | 7429-90-5 | | | | NR | | 7440-36-0 | Antimony_ | | | NR | | 7440-38-2 | Arsenic | | | NR | | 7440-39-3 | Barium | | - | NR | | 7440-41-7
7440-43-9 | Beryllium
Cadmium | | - | NR
NR | | 7440-70-2 | Calcium | | - | NR | | 7440-47-3 | Chromium | | - | NR | | | Cobalt | | - | NR | | 7440-50-8 | Copper | | - | NR | | 7439-89-6 | Iron | | - | NR | | 7439-92-1 | Lead | | | NR | | 7439-95-4 | Magnesium | | | NR | | 7439-96-5 | Manganese | | | NR | | 7439-97-6 | Mercury_ | 0.02 | | CV | | 7440-02-0 | Nickel | | _ | NR | | | Potassium | | | NR | | 7782-49-2 | Selenium_ | | | NR | | I | Silver | | | NR | | | Sodium Thallium | | - | NR
NR | | 7440-28-0 | Vanadium Vanadium | | - | NR NR | | 7440-66-6 | Zinc | | - | NR | | 7440 00 0 | Cyanide | | - | NR | | | | | | | | Color Before: | Clarit | y Before: | <u>*</u> | Texture: | | Color After: | Clarit
| y After: | | Artifacts: | | Comments: | | | | | ILM02.1 FORM I - IN ### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | ⊶o Name: AQU | ATEC | | Contract: 9 | 108 | 2 | K40396W | |---------------|--------------|------------|-----------------|----------|---------|-----------------| | ab Code: AQU | AI_ Ca | se No.: BI | O SAS No. | : _ | | SDG No.: 40219 | | atrix (soil/ | water): FISH | | | La | b Sampl | le ID: 201648 | | evel (low/med | d): LOW_ | | | Da | te Rece | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | | | <u> </u> | | | | | | CAS No. | Analyte | Concentration | C | Q | M | | | 7429-90-5 | Aluminum | | [-[| | NR | | | 7440-36-0 | Antimony | | - | | NR | | | 7440-38-2 | Arsenic | | - | | NR | | | 7440-39-3 | Barium — | | | | NR | | | 7440-41-7 | Beryllium | | - | | NR | | | 7440-43-9 | Cadmium | | | | NR | | | 7440-70-2 | Calcium | | - | | NR | | | 7440-47-3 | Chromium | | - | | NR | | | 7440-48-4 | Cobalt | | | | NR | | | 7440-50-8 | Copper | | - | | NR | | | 7439-89-6 | Iron | | | | NR | | | | Lead | | | | NR | | _ | | Magnesium | | | | NR | | | 7439-96-5 | Manganese | | | | NR | | | 7439-97-6 | Mercury_ | 0.02 | | | CV | | | | Nickel | | | | NR | | | | Potassium | | | | NR | | • | | Selenium_ | | | | NR | | | | Silver | | | | NR | | | 1 | Sodium | | 1_1 | | NR | | | 7440-28-0 | Thallium | | | | NR | | | 7440-62-2 | Vanadium_ | | | | NR | | | 7440-66-6 | Zinc | | [] | | NR | | | | Cyanide | | - | | NR | | lor Before: | | Clarit | y Before: | <u>.</u> | | Texture: | | lor After: | | Clarit | y After: | | | Artifacts: | | | | | | | | | FORM I - IN #### 1 INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | Name: AQU | ATEC | <u></u> | Contract: 9 | 1082 | 2 | K40397W | |---------------------|--------------|---------------|----------------|-----------|--------|-----------------| | b Code: AQU | AI_ Ca | se No.: BI | OSAS No. | : _ | | SDG No.: 40219 | | trix (soil/ | water): FISH | <u>_</u> | | Lal | Samp | le ID: 201649 | | vel (low/me | g): rom_ | _ | | Dat | te Rec | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | C | oncentration | Units (ug | /L or mg/kg dr | y we | eight) | : MG/KG | | | CAS No. | Analyte | Concentration | С | Q | м | | | 7429-90-5 | X 111m 1 m11m | | - | | NR | | | 7440-36-0 | Antimony | | - | | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium | | - - | | NR | | | | Beryllium | | - - | | NR | | | | Cadmium | | - - | | NR | | | | Calcium | | - - | | NR | | | | Chromium | | - - | | NR | | | | Cobalt | | - | | NR | | | 7440-50-8 | Copper | | - - | | NR | | | | Iron | | - - | | NR | | | | Lead | | - - | | NR | | | 4 | Magnesium | | - - | | NR | | | | Manganese | | - - | | NR | | | | Mercury | 0.02 | BI- | | CV | | | | Nickel - | | | ···· | NR | | | | Potassium | | - - | | NR | | • | 7782-49-2 | Selenium | | [-[- | | NR | | | | Silver - | | - - | | NR | | | 7440-23-5 | Sodium | | - - | | NR | | | | Thallium | | - - | | NR | | | 7440-62-2 | Vanadium - | | - - | | NR | | | 7440-66-6 | Zinc - | | - - | | NR | | | | Cyanide | | - - | | NR | | or Before: | | Clarit | y Before: | j
p. | | Texture: | | or After: | | | y After: | | | Artifacts: | | TO 110 TTO 1 | | | | | | | ## INORGANIC ANALYSES DATA SHEET EPA SAMPLE NO. | √b Name: AQU | ATEC | | Contract: 91 | 108: | 2 | K40398W | |---------------|-------------|---------------|-----------------|--------------|-------------|-----------------| | - | | | O SAS No.: | : | | SDG No.: 40219 | | atrix (soil/ | _ | | | | | e ID: 201650 | | evel (low/med | i): Low_ | - | | Da | te Rece | eived: 10/16/93 | | Solids: | 100. | 0 | | | | | | Co | ncentration | Units (ug | /L or mg/kg dry | y w | eight): | MG/KG | | | | <u> </u> | | | | | | | CAS No. | Analyte | Concentration | C | Q | M | | | 7429-90-5 | A 1117 1 7117 | | - - | | NR | | _ | 7440-36-0 | Antimony | | - - | | NR | | | 7440-38-2 | Arsenic | | - - | | NR | | | 7440-39-3 | Barium | | - - | | NR | | | 7440-41-7 | Beryllium | | - - | | NR | | | 7440-43-9 | Cadmium | | [-]: | | NR | | | 7440-70-2 | Calcium | | - - | | NR | | | 7440-47-3 | Chromium | | - - | | NR | | | 7440-48-4 | Cobalt - | | - | | NR | | | 7440-50-8 | Copper | | | | NR | | | 7439-89-6 | Iron | | - - | | NR | | | 7439-92-1 | Lead | | - · | | NR | | | 7439-95-4 | Magnesium | | - - | | NR | | | 7439-96-5 | Manganese | | - - | | NR | | | 7439-97-6 | Mercury | 0.02 | - · | | cv | | | 7440-02-0 | Nickel - | | - - | | NR | | | | Potassium | | - : | | NR | | • | 7782-49-2 | Selenium | | - : | | NR | | | 7440-22-4 | Silver - | | - : | | NR | | | 7440-23-5 | Sodium | | - : | | NR | | | | Thallium | | - : | | NR | | | 7440-62-2 | Vanadium - | | - · | | NR | | | 7440-66-6 | Zinc | | - | | NR | | | | Cyanide | | [=]: | | NR | | lor Before: | 1 | اا | | 1_1. | | | | | | | y Before: | | | Texture: | | lor After: | | Clarit | y After: | | | Artifacts: | | mments: | | | | | | | | | | | | | | | | | | | | | | | FORM I - IN ### MISCELLANEOUS PARAMETERS ### MISCELLANEOUS PARAMETERS | Sample ID | Description | Sex | %Lipid | |-----------|------------------------|--------|--------| | K40114W | Golden Redhorse Sucker | male | 5.22 | | K40115W | Golden Redhorse Sucker | male | 5.94 | | K40116W | Golden Redhorse Sucker | male | 3.65 | | K40117W | Golden Redhorse Sucker | male | 2.20 | | K40381W | Golden Redhorse Sucker | female | 3.13 | | K40382W | Golden Redhorse Sucker | male | 1.18 | | K40383W | Golden Redhorse Sucker | male | 2.75 | | K40384W | Golden Redhorse Sucker | female | 2.27 | | K40385W | Golden Redhorse Sucker | male | 1.42 | | K40386W | Golden Redhorse Sucker | female | 2.64 | | K40392W | Golden Redhorse Sucker | male | 4.89 | | K40393W | Golden Redhorse Sucker | female | 4.44 | | K40394W | Golden Redhorse Sucker | male | 2.50 | | K40395W | Golden Redhorse Sucker | female | 3.57 | | K40396W | Golden Redhorse Sucker | male | 4.08 | | K40397W | Golden Redhorse Sucker | male | 2.46 | | K40398W | Golden Redhorse Sucker | male | 3.42 |